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Preface

These lecture notes are designed as an accompanying text for the course Numerical Mathemat-
ics in the master programs Geodesy and Geoinformatics and Remote Sensing and Geoinfor-
matics. The topics treated here are common in a usual course on numerical mathematics, and
are supplemented with example applications from the world of geodesy and (geo-)informatics.
Here, the internet plays a prominent role by including google’s PageRank, and cryptography.
Furthermore, inspired by the book The Simpsons and their Mathematical Secrets by Simon
Singh, related mathematical topics from the animated sitcoms The Simpsons and Futurama
are treated, too. I would like to express my particular gratitude to Father Nil from the Skete
of Saint Spiridon in Geilnau for his invaluable help with the spiritual examples.

Hints on typographical and other errors are welcome. This can lead to an improved further
edition.

Karlsruhe, February 5, 2019 P.E. Bradley
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Chapter 1

Floating Point Arithmetic

1.1 Floating Point Numbers

A floating point number
a = m · βe

consists of a mantissa m, a base β and an exponent e. It is normalised, if

β−1 ≤ m < 1

i.e. if
m = 0. x1x2 . . .

with x1 6= 0.

Remark 1.1.1. Also other normalisations are possible, e.g.

2.597 E− 03 = 2.597 · 10−3

instead of 0.2597 · 10−2.

IEEE Standard, Double Precision

A double precision number in the im IEEE standard is representable as a 64-bit word over the
alphabet {0, 1}:

σ︸︷︷︸
sign

a1 . . . a52︸ ︷︷ ︸
mantissa

e0 . . . e10︸ ︷︷ ︸
exponent

The value assigned to such a word is

x = (−1)σ

(
1 +

51∑
i=1

2−ia52−i

)
· 2e−1023

with

e =

10∑
i=0

ei2
i

1.2 Overflow and Underflow

Not all real numbers can be represented by a word of finite length. As the mantissa has finite
length, rounding errors occur. Overflow and Underflow occur due to the finite length of the
exponent.
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Overflow

Overflow means that an arithmetic operation produces a number whose exponent is too big.

Underflow

Underflow means that an arithmetic operation produces a number whose exponent is too small.

Remark 1.2.1. Overflow always leads to an error message, i.e. it is fatal.

Underflow yields a number which is almost zero. This means that if the number is set to zero,
then the calculation can be continued with this value.

Often, overflow can be elmiminated at the cost of introducing harmless underflows.

Example 1.2.2. Let

c =
√
a2 + b2

with a = 1060 and b = 1 in a decimal system with 2-digit exponent. Here, a2 leads to an
overflow. This can be eliminated as follows:

c = s

√(a
s

)2
+

(
b

s

)2

, s = max {|a|, |b|} = 1060

yields

c = 1060

√
12 +

(
1

1060

)2

with the underflow (
1

1060

)2

Setting this to zero yields c = 1060.

1.3 Rounding Errors

Not every real number can be represented exactly on a computer. E.g.

√
7 = 2.6457513 . . .

On a 5-digit decimal calculator, the last digits must be discarded. There are two possibilities:

1. Rounding: √
7 ≈ 2.6458

2. Truncation: √
7 ≈ 2.6457
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Error Bounds

Round up to 5 digits. Then
a = X.XXXXY

is represented by the number
b = X.XXXZ

If Y ≥ 5, then round to the next higher digit, and if Y < 5, then truncate. The error satisfies

|b− a| ≤ 5 · 10−5

If the leading digit is 6= 0, i.e. |a| ≥ 1, then

|b− a|
|a|

≤ 5 · 10−5 =
1

2
· 10−4

In general, we have:

1. For rounding to t decimal digits, the relative error is

|b− a|
|a|

≤ 1

2
· 10−t+1

2. For truncating to t decimal digits, we have:

|b− a|
|a|

≤ 10−t+1

For binary numbers, it holds true that:

|b− a|
|a|

≤

{
2−t (Rounding)

2−t+1 (Truncation)

1.4 Machine Epsilon

Let b = fl(a) be the machine representation of a real number a ∈ R. Let εM be the smallest
upper bound for the relative error:

ε =
b− a
a

und |ε| ≤ εM

In other words:
fl(a) = a(1 + ε), |ε| ≤ εM

The number εM is called machine epsilon and is a characteristic of the floating point arithmetic
on a given machine.

Remark 1.4.1. εM is a bit larger than the largest number x, for which

fl(1 + x) = 1

Example 1.4.2. In a 6-digit binary arithmetic, the number x = 2−7 yields:

fl(1 + x) = 1
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Consequence. An approximation of εM is given through the following algorithm:
Start. x0 = 1
Step n. If fl(1 + xn−1) 6= 1, then set xn := xn−1

2 .

Or in pseudo code:
x=1;

while (1 + x != 1)
x = x/2;

1.5 Arithmetic

The result of an arithmetical operation can be represented on a computer only by approximation:
E.g. the product of two n-digit numbers can have up to 2n digits.

Ideally, the result of a floating point operation is the correct rounding of the expected result.
I.e. for the operation 2 it should hold true that:

fl(a2 b) = (a2 b)(1 + ε), |ε| ≤ εM

In the IEEE standard this is realised, as long as there is no overflow or underflow.

When calculating differences, there can occur large relative errors.

Example 1.5.1. Consider the calculation of the difference 1 − 0.999999 in a 6-digit decimal
arithmetic. If 7 digits were possible, then this would yield the correct result 0.100000 · 10−6.
However, with only 6 digits, we have:

1.00000
−0.99999

0.00001 = 0.10000 · 10−5

The relative error is ∣∣0.1 · 10−5 − 0.1 · 10−6
∣∣

0.1 · 10−6
= 9.9

and this is quite large. By using an internal extra seventh digit, this error could have been
avoided.

Example 1.5.2. Consider a 4-digit artihmetic. We would like to add 10.90 and 0.009. The
result in this arithmetic is 10.90, because the larger number uses two digits before the decimal
point which means that the smaller number is truncated after the second digit after the decimal
point during the addition.

1.5.1 Calculation of Sums

Let us generalise the equation

fl(a+ b) = (a+ b)(1 + ε), |ε| ≤ εM

to sums of the form
Sn = fl(x1 + x2 + · · ·+ xn)

Here, the result depends on the ordering of summands. We define:

fl(x1 + x2 + · · ·+ xn) := fl(. . . (fl(fl(x1 + x2) + x3) . . . ) + xn)
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It holds true that:

S2 = fl(x1 + x2) = (x1 + x2)(1 + ε1) = x1(1 + ε1) + x2(1 + ε1), |ε1| ≤ εM
S3 = fl(S2 + x3) = (S2 + x3)(1 + ε2)

= x1(1 + ε1)(1 + ε2)

+ x2(1 + ε1)(1 + ε2)

+ x3(1 + ε2)

Sn = fl(Sn−1 + xn) = (Sn−1 + xn)(1 + εn−1)

= x1(1 + ε1)(1 + ε2) · · · (1 + εn−1)

+ x2(1 + ε1)(1 + ε2) · · · (1 + εn−1)

+ x3(1 + ε2) · · · (1 + εn−1)

. . .

+ xn−1(1 + εn−2)(1 + εn−1)

+ xn(1 + εn−1), |εi| ≤ εM , i = 1, . . . , n− 1

Define ηi via

1 + η1 = (1 + ε1)(1 + ε2) · · · (1 + εn−1)

1 + η2 = (1 + ε1)(1 + ε2) · · · (1 + εn−1)

1 + η3 = (1 + ε2) · · · (1 + εn−1)

. . .

1 + ηn−1 = (1 + εn−2)(1 + εn−1)

1 + ηn = 1 + εn−1

Then it holds true that:

Sn =
n∑
i=1

xi(1 + ηi)

Examination of 1 + ηi

1 + ηn−1 = (1 + εn−2)(1 + εn−1) = 1 + εn−2 + εn−1 + εn−2εn−1

' 1 + εn−2 + εn−1 (in 1. order)

Indeed, because of
|εn−2εn−1| ≤ ε2M

higher-order terms in εi can be discarded. It follows that:

ηn−1 ' εn−2 + εn−1 (in 1. order)

resp.
|ηn−1| . |εn−2|+ |εn−1| ≤ 2εM (in 1. order)

In general, we have:

|η1| . (n− 1)εM

|ηi| . (n− i+ 1)εM , i = 2, . . . , n

The following holds true:
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Theorem 1.5.3. If nεM ≤ 0.1 and |εi| ≤ εM for i = 1, . . . , n, then

(1 + ε1)(1 + ε2) · · · (1 + εn) = 1 + η

with
η ≤ 1.06 · nεM

Thus set
ε′M := 1.06 · εM

then the approximate bounds become rigourous:

|η1| ≤ (n− 1)ε′M

|ηi| ≤ (n− i+ 1)ε′M ,i = 2, . . . , n

Example 1.5.4. The condition nεm ≤ 0.1 for εM = 10−15 means n ≤ 1014. A computer which
takes for each addition 1µs = 10−6 seconds, needs for the addition of 1014 numbers

108s = 3.2 years

This implies that Theorem 1.5.3 is applicable for practical purposes.

1.6 Fermat’s Last Theorem

The Greek mathematician Diophantos of Alexandria wrote in the third century A.D. a mathe-
matical treatise named Arithmetica. It is a collection of 300 algebraic equations together with
methods for finding solutions. One equation which occurs in this treatise is

x2 + y2 = z2

where x, y, z are supposed to be positive natural numbers. The solutions are called Pythagorean
triples. There are infinitely many of those.

Fermat writes in this place in his copy of this treatise on the margin:1

“It is, however, not possible to decompose a cube into 2 cubes, or a bi-square into 2
bi-squares, or generally any power higher than the second, into 2 powers with the same
exponent: I have discovered for this a truly wonderful proof, but this margin here is too
small to comprise it.”

In other words:

Theorem 1.6.1 (Fermat, ca. 1637). The equation

xn + yn = zn

has for n ≥ 3 and x, y, z > 0 no integer solutions.

Strictly speaking, Theorem 1.6.1 is not a theorem, as Fermat does not provide a proof. It
is the last in the collection of Fermat’s results, without himself publishing a proof, for which a
proof was found. Hence, the name Fermat’s Last Theorem. A first valid proof was published
by Andrew Wiles (1995). Up to then, special cases of this theorem, as well as the fact that it
suffices to prove the theorem for n = 4 and for n an even prime number.

1In the original, this note is written in Latin.
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Wiles’ method can be sketched as follows: since 1990 it was known that for a counter
example a, b, c mit an + bn = cn it follows that the elliptic curve2

y2 = x(x− an)(x+ bn)

(a so-called Frey curve) cannot be modular3. On the other hand, there is the Taniyama-Shimura
conjecture, which says that all elliptic curves defined over Q are modular. Andrew Wiles and
Richard Taylor proved this conjecture for a large class of elliptic curves containing the Frey
curve. This yields a contradiction. Hence, there cannot exist a counter example to Fermat’s
Last Theorem.

Shortly afterwards, the following example appeared in the animated tv-sitcom The Simp-
sons:

Example 1.6.2 (Homer Simpson, 1995).

178212 + 184112 = 192212

This is one of the apparitions which Homer Simpson has in the bachground of the scene
Homer3 (Homer to the three) in the episode Treehouse of Horror VI when he gets transported
to the third dimension. You can verify this “counter example” to Fermat’s Last Theorem on a
pocket calculator: the 12th root of the left hand side yields indeed 1922, an integer. The reason
is the 10-digit floating point arithmetic on the pocket calculator. If you have more digits at
your disposal, then you can see that this 12th root is a tiny bit bigger than 1922. Scriptwriter
Cohen produced this near miss to Fermat’s equation with the help of a computer program.
Even without a calculator, one can see that this example must be wrong: the left hand side is
the sum of an even with an odd number, hence odd. But the right hand side is even. This is a
contradiction.

Three years later, in The Wizard of Evergreen Terrace, Homer writes onto his blackboard
a prediction of the mass of the Higgs boson (14 years before its discovery), the density of the
universe, a strange topological transformation of a donut into a sphere, and also another near
miss of a counter example to Fermat’s Last Theorem:

Beispiel 1.6.3 (Homer Simpson, 1998).

398712 + 436512 = 447212

This can be “verified” again on a pocket calculator. Again, it can be seen that this example
must be wrong: the right hand side is the sum of two numbers which are divisible by 3 (check
the sum of the digits!), while the right hand side is not. Namely:

447212 ≡ 212 ≡ 46 ≡ 1 6≡ 0 mod 3

2cf. Chapter 7.2
3This margin is too small to comprise an explanation of this expression. . .
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Chapter 2

Non-linear Equations

2.1 The basic problem

Here, we will treat the basic problem of solving an equation

f(x) = 0

in one unknown x. It is left open, if all solutions are looked for, or if there are restrictions to
the possible solution space.

Example 2.1.1. Consider the equation f = 0 with

f = x2 − 9

This equation has a solution in the integers Z. One method for solving this equation is to use
the prime decomposition of integers:

9 = 32 ⇒ x = ±3

In this example the following was used:

Theorem 2.1.2 (Fundamental Theorem of Arithmetic). Every positive natural number has a
decomposition as a product of prime numbers, which is unique up to the order of the factors.

This is a pure existence theorem. It is to date an unsolved problem if the prime factor
decomposition can be obtained in polynomial time.

Example 2.1.3. Let
f = x2 − 2

Here, f(x) = 0 has no solutions in the rational numbers Q. The reason is that
√

2 is irrational.
But we can approximate

√
2 with rational numbers. It holds true that

f(1) = −1 < 0 and f(2) = 2 > 0

Hence, by the intermediate value theorem, f has a zero x ∈ [1, 2]. Further, we have

f(3/2) =
1

4
> 0

Hence, f has a zero x ∈ [1, 3/2]. This can be continued for ever, where in every step the interval
containing x is subdivided in half.

12



Here, the following was used:

Theorem 2.1.4 (Intermediate Value Theorem). Let f : [a, b] → R be a continuous function.
Then for every u between f(a) and f(b) there exists some c ∈ [a, b] with f(c) = u.

Example 2.1.5. Let
f = x2 + 1

Here, f(x) = 0 has no solutions in the real numbers R. However, the following extension of the
domain Q leads to a solution: Let i :=

√
−1 (symbolically). Then let

Q(i) := Q⊕Qi

be the set of numbers of the form

z = x+ yi (symbolically)

The usual rules for addition and multiplication are used under the observance that i2 = −1.
The equation f(z) = 0 is exactly solvable in Q(i):

z = ±i

Remark 2.1.6. The method from 2.1.5 also works with
√

2:

Q(
√

2) := Q⊕Q
√

2

Then z2 − 2 = 0 is exactly solvable with z = ±
√

2.

Often used as possible solution spaces are:

1. R (real numbers)

2. C = R⊕Ri (complex numbers)

The main reason for choosing C is

Theorem 2.1.7 (Fundamental Theorem of Algebra). Every polynomial

f(X) = a0 + a1X + · · ·+ anX
n

with coefficients a0, . . . , an ∈ C has a zero in C.

In general, there are further restrictions to the possible solution space. In the case of R, the
solution must e.g. be taken in some given interval [a, b]. In the case C, the solution space could
be e.g. in some domain or disc.

When using a calculator, further restrictions are made. Thus, in a real solution space, the
solution is often to be approximated by finite decimal numbers. In the case of complex solutions,
one oten approximates the real and imaginary parts with finite decimal numbers.

13



2.2 Bisection Method

Here, the problem is to solve the equation

f(x) = 0

for a continuous real valued function f on an interval [a, b].

Let it be assumed that f(a) · f(b) < 0. Then a binary search can be done. For this, set

x1 :=
a+ b

2
, I0 := [a, b]

There are 3 possibilities:

1. If f(a)f(x1) < 0, then set I1 := [a, x1].

2. If f(x1)f(b) < 0, then set I1 := [x1, b].

3. If f(x1) = 0, then we are done: a solution is x = x1.

By continuing, we obtain a sequence xn as the midpoint of the interval In−1.

Theorem 2.2.1. The sequence xn converges to

x := lim
n→∞

xn

and it holds true that
f(x) = 0

The approximation error for xn is

εn := |xn − x| ≤
b− a

2n

and the convergence is linear.

We need a definition. Let xn → x be a convergent sequence.

Definition 2.2.2. xn converges with order q, if there is a ρ > 0 such that for all n we have:

|xn+1 − x| ≤ ρ|xn − x|q

ρ is called the rate of convergence.

Definition 2.2.3. xn is called R-linearly convergent, if there is a sequence αn > 0 gibt, which
converges with order 1 and rate of convergence ρ ∈ (0, 1) to 0, such that for all n it holds true
that:

|xn − x| ≤ αn

Proof of Theorem 2.2.1. By the intermediate value theorem (Theorem 2.1.4), each of the inter-
vals In contains a zero of f . As the intersection of all these intervals is a point ξ, it follows that
ξ is at the same time a zero of f and the limit of the sequence xn.

The convergence is R-linear because

εn ≤ κn :=
b− a

2n
⇒ lim

n→∞
κn = 0 and κn+1 ≤

1

2
κn

14



2.3 Fixed Point Methods

We want to solve the equation
f(x) = 0

where f = x3 − x− 1, iteratively with

xn = φ(xn−1)

Here, let

1. φ(x) := (x+ 1)
1
3

2. φ(x) := x3 − 1

In each case, the solution is given as a fixed point

φ(x) = x

By inspectiong Figure 2.1 we choose as starting point x0 = 1.5. The graphs of the iterators φ
are given in Figure 2.2.

Figure 2.1: The graph of x3 − x− 1.

Let us calculate the first few iterations:

1. φ(x) = (x+ 1)
1
3 .

x1 = 1.3572, x2 = 1.3309, x3 = 1.3259, x4 = 1.3249

2. φ(x) = x3 − 1.

x1 = 2.375, x2 = 12.396, x3 = 1904.003, x4 = 6.902 · 109
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Figure 2.2: The graphs of the iterators φ.

The sequence in 1. could possibly converge, whereas the sequence in 2. probably diverges.
A method for deciding this, is

Theorem 2.3.1 (Banach Fixed Point Theorem). Let (X, d) be a non-empty metric space. If
(X, d) is complete and

T : X → X

a contraction, then T has precisely one fixed point in X.

We will now define the emphasized terms.

Definition 2.3.2. A mapping
d : X ×X → R

is a metric on X, if d(x, y) ≥ 0 for all x, y ∈ X, and if for all x, y, z ∈ X it holds true that:

1. d(x, y) = 0 if and only if x = y. (definiteness)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Definition 2.3.3. A metric space is called complete if every Cauchy sequence converges in X.

Definition 2.3.4. A sequence (xn) is called a Cauchy sequence, if for every ε > 0 there exists
an N ∈ N such that for all m,n > N we have:

d(xm, xn) < ε

Definition 2.3.5. A mapping T : X → X is called a contraction, if there exists a non-negative
real number L < 1 with

d(T (x), T (y)) ≤ L · d(x, y)

The Banach Fixed Point Theoream (Theorem 2.3.1) can be formulated in a constructive
manner:

16



Theorem 2.3.6. Let T : X → X be a contraction in a complete metric space. Then the sequence

xn+1 = T (xn)

converges for every starting point x0 ∈ X to the (unique) fixed point of T .

The limit x := limxn for a contraction T is indeed a fixed point:

Proof.

limxn = limT (xn−1)
(∗)
= T (limxn−1)

(∗) holds true, because contractions are continuous. Hence, x = T (x).

The number L for contraction T is called Lipschitz constant.

For continuously differentiable real-valued functions on an interval, there is a criterion for
being a contraction.

Theorem 2.3.7. If I ⊂ R is a closed interval and φ : I → R is continuously differentiable with
φ(I) ⊆ I and ∣∣φ′(x)

∣∣ ≤ L < 1

for all x ∈ I, then φ is a contraction.

Proof. By the mean value theorem (Theorem 2.3.8), for all x < y in I there exists some ξ ∈ (x, y)
with

|φ(y)− φ(x)|
|y − x|

=
∣∣φ′(ξ)∣∣ ≤ L < 1

Hence, φ is a contraction.

The following was used:

Theorem 2.3.8 (Mean Value Theorem). Let f : [a, b] → R be a continuous function which is
differentiable in the open interval (a, b). Then there is a ξ ∈ (a, b) with

f ′(ξ) =
f(b)− f(a)

b− a

Example 2.3.9. Take φ(x) = (x+ 1)
1
3 . Then

φ′(x) =
1

3
(x+ 1)−

2
3

For I = [1, 2] it holds true that: ∣∣φ′(x)
∣∣ < 0.21 =: L < 1

for x ∈ I (cf. Figure 2.3).

Example 2.3.10. For φ(x) = x3 − 1 we have φ′(x) = 3x2. With x0 = 1.5 it follows that

φ′(x0) = 6.75 > 1

Indeed, φ is on no interval containing x0 a contraction.
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Figure 2.3: The derivatives of the iterators on the interval [1, 2].

2.3.1 Error bounds for Contractions

A priori

Let T : X → X be a contraction with fixed point x ∈ X. For xn = T (xn−1) the error is

εn := d(xn, x)

We have:

d(xk, xk−1) ≤ L · d(xk−1, xk−2) ≤ · · · ≤ Lk−1 · d(x1, x0)

where L is the Lipschitz constant of T . Further, we have:

d(xm+n, xn) ≤ d(xm+n, xm+n−1) + · · ·+ d(xn+1, xn)

≤ (Lm+n−1 + · · ·+ Ln) · d(x1, x0)

With m→∞ we obtain the a priori error bound :

εn ≤
Ln

1− L
· d(x1, x0)

Here, the geometric series
∞∑
n=0

xn =
1

1− x
, falls |x| < 1

was used.

From the a priori error bound, the number of iterations can be bounded if the the error may
be at most ε > 0:

εn ≤
Ln

1− L
· d(x1, x0) ≤ ε ⇒ n ≥

log ε·(1−L)
d(x1,x0)

logL
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A posteriori

For a contraction T with xn = T (xn−1) we have:

d(xn+k, xn+k−1) ≤ Lk · d(xn, xn−1)

This implies:

d(xn+m, xn) ≤ d(xn+m, xn+m−1) + · · ·+ d(xn+1, xn)

≤ (Lm + · · ·+ L) · d(xn, xn−1)

With m→∞ this yields the a posteriori error bound :

εn ≤
L

1− L
· d(xn, xn−1)

A priori vs. a posteriori

The a priori error bound

ε̃n :=
Ln

1− L
· d(x1, x0)

can be calculated after the first iteration, whereas the a posteriori error bound

ε̂n :=
L

1− L
· d(xm, xn−1)

is only known, once xn is known.

Theorem 2.3.11. For contractions, the a posteriori error bound is smaller than the a priori
bound.

Proof. As T is a contraction, we have:

εn ≤ ε̂n =
L

1− L
· d(xn, xn−1) ≤

L

1− L
· Ln−1d(x1, x0) = ε̃n

2.4 Newton’s Method

Here, we assume that f : I → R is a twice continuously differentiable function, and that ξ ∈ I
be a simple zero of f . This means:

f(ξ) = 0 and f ′(ξ) 6= 0

Expanding f into a Taylor series in x0 ∈ I yields:

f(ξ) = f(x0) + f ′(x0)(ξ − x0) +R(ξ, x0)

with

R(ξ, x0) = f ′′(α)
(ξ − x0)2

2

where α is strictly between ξ and x0. For |ξ − x0| → 0, we have:

R(ξ, x0)→ 0
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Hence,
0 ≈ f(x0) + f ′(x0)(ξ − x0)

i.e.

ξ ≈ x0 −
f(x0)

f ′(x0)

where f ′(x0) 6= 0 for |ξ − x0| sufficiently small. This gives us the iterator

φ(x) = x− f(x)

f ′(x)

with starting point x0 near the zero ξ.

Lemma 2.4.1. There exists in I a neighbourhood U(ξ) = [ξ − h, ξ + h] of ξ, in which f ′ has
no zero and in which ∣∣φ′(x)

∣∣ < 1

holds true.

Proof. As f ′ is continuous, there is a neighbourhood V (ξ) of ξ not containing a zero of f ′. Now,

φ′(x) =
f(x)f ′′(x)

f ′(x)2

is continuous as the product of continuous functions, and

φ′(ξ) = 0

Hence, there exists in I a neighbourhood W (ξ) of ξ with |φ′| < 1. Any neighbourhood of ξ
inside V (ξ) ∩W (ξ) now satisfies our needs.

Consequence. The iterator φ : U(ξ)→ R is a contraction with Lipschitz constant

L = max
{∣∣φ′(x)

∣∣ | x ∈ U(ξ)
}
< 1

Proof. We need to show that φ(U(ξ)) ⊆ U(ξ). This follows from:

|φ(x)− ξ| = |φ(x)− φ(ξ)| ≤ L|x− ξ| < |x− ξ| ≤ h

where U(ξ) = {x ∈ R | |x− ξ| ≤ h}.

We can also say something about the convergence of the Newton iterator:

Theorem 2.4.2. Let f : [a, b] → R be twice continuously differentiable with simple zero ξ ∈
[a, b]. Then there exists in [a, b] a neighbourhood U(ξ), such that the iterator φ converges
quadratically (i.e. with order 2) for every starting point x0 ∈ U(ξ).

Proof. The Taylor series in xn ∈ U(ξ) is

0 = f(ξ) = f(xn) + f ′(xn)(ξ − xn) +
1

2
f ′′(αn)(ξ − xn)2

As

xn+1 = xn −
f(xn)

f ′(xn)
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it follows that:

ξ − xn+1 =
f(xn)

f ′(xn)
+ (ξ − xn) =

−f ′′(αn)

2f ′(xn)
(ξ − xn)2

Hence, for the error εn = |ξ − xn| we have:

εn+1 =

∣∣∣∣−f ′′(αn)

2f ′(xn)

∣∣∣∣︸ ︷︷ ︸
=:Cn

ε2n

with

lim
n→∞

Cn =

∣∣∣∣ f ′′(ξ)2f ′(ξ)

∣∣∣∣
Hence, Cn is bounded. With ρ = min {Cn}, we have

εn+1 ≤ ρε2n

and this means that the order of convergence is 2.

Let us summarize that Newton’s method converges quadratically, but only locally, i.e. in a
neighbourhood of a zero.

In order to find a suitable starting point, one can e.g. use the bisection method.

2.4.1 Two Applications

Optimization

Let f : I → R be three times continuously differentiable. The problem here is to find maxima
and minima of f . These are zeros of the derivative f ′. This yields the Newton iterator

φ(x) = x− f ′(x)

f ′′(x)

Newton-Raphson Division

Hier, the problem is to calculate 1
D for D 6= 0 numerically. For this task, solve the equation

f(x) = 0

with f = 1
x −D and x 6= 0. The iterator is

φ(x) = x− f(x)

f ′(x)
= x(2−Dx)

and uses only multiplication and subtraction.

2.5 Secant Method

Newton’s method

xn+1 = xn −
f(xn)

f ′(xn)
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uses in every step the derivative of the function f at the point xn. If this is not known or
too difficult to compute, the differntial quotient f ′ can be approximated with the difference
quotient:

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1
This yields the iteration

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)

An advantage is that only function values f(x) are used. A disadvantage is that convergence is
slower. The error satisfies:

εn+1 ≈ C · εαn
with

α =
1 +
√

5

2
≈ 1.618 < 2

2.6 Newton Fractal

Now, we describe the Newton iterator over the complex numbers. For this, let p be a non-
constant meromorphic function on C, i.e.

p =
f

g

with f, g holomorphic. The latter means that those functions can be expanded in every point
of C locally (d.h. in a neighbourhood) into a Taylor series. Then the complex Newton iterator
for the equation p = 0 is:

φ(z) = z − p(z)

p′(z)

The results for the real Newton iterator carry over to φ(z). Convergence depends on the starting
point z0 ∈ C.

For the following considerations, we use the abbreviation:

φn := φ ◦ · · · ◦ φ︸ ︷︷ ︸
n-mal

I.e.
φn(z) = φ(φ(. . . (φ︸ ︷︷ ︸

n times

(z)) . . . )

For z ∈ C we consider the sequence

Fz(w) : |z − w|, |φ(z)− φ(w)|,
∣∣φ2(z)− φ2(w)

∣∣, . . .
For Fz(w)n = |φn(z)− φn(w)| there are two possibilities:

1. There is a neighbourhood U(z) of z, such that for all w ∈ U(z):

lim
n→∞

Fz(w)n = 0

2. In every neighbourhood U(z) there is some w, such that

Fz(w)n 6→ 0 (n→∞)
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Definition 2.6.1. The set

F(φ) := {z ∈ C | 1. holds true for z}

is called the Fatou set of φ. The set

J(φ) := {z ∈ C | 2. holds true for z}

is called the Julia set or also the Newton fractal of φ.

Theorem 2.6.2. Let φ be a complex Newton iterator. If the starting point z0 is in F(φ), then
φn(z0) converges to a periodic cycle of finite length. If z0 ∈ J(φ), then φn(z0) does not converge.

If in the first case, the length of the cycle is 1, then the Newton iterator converges to the
fixed point for this particular starting point z0.

Example 2.6.3. Let p = z3 − 1. This yields the Newton iterator

φ =
2z3 + 1

3z2

Notice that the solutions of p = 0 are the third roots of unity:

ζ = e
2πi
3 , ζ2 = e

4πi
3 , ζ3 = 1

with i =
√
−1 ∈ C.

Figure 2.4: Newton fractal and Fatou set for z3 − 1 = 0 (Source: Wikipedia, Author: Georg-
Johann Lay).

In Figure 2.4, the Julia set is white. Red means convergence to 1, green convergence to ζ,
and blue convergence to ζ2. The brightness of the coloured points represents the convergence
rate: bright means fast, and dark slow convergence.
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For the next example, we need

Lemma 2.6.4. Every polynomial f with real coefficients and odd degree has a real zero.

Proof. View f as a complex polynomial. Then, by the fundamental theorem of algebra (The-
orem 2.1.7), f has a complex zero. Later, in Section 3.2, we will see that f can be written
as:

f(X) = α ·
∏
µ

(X − αµ), α, αν ∈ C(2.1)

with αµ ∈ C. As f is real, we have that if ξ ∈ C is a zero, then also the complex conjugate ξ̄ is
a zero of f , because:

f(ξ̄) =
∑
ν

aν ξ̄
ν =

∑
ν

āνξν =
∑
ν

aνξν = 0̄ = 0

if f(X) =
∑
ν
aνX

ν . It follows, because of (2.1), that in the case of odd degree at least one zero

ξ has to satisfy:
ξ̄ = ξ

i.e. ξ is real.

Example 2.6.5. Let p = z3 − 2z + 2. Then the Newton iterator

φ =
2z3 − 2

3z2 − 2

for p has at least one and at most three real zeroes. The critical values are given as:

p′(x) = 0 ⇔ x = ±
√

2

3

As

0 < p

(√
2

3

)
= 2− 4

3

√
2

3
< p

(
−
√

2

3

)
= 2 +

4

3

√
2

3

it follows that −
√

2
3 is a local maximum,

√
2
3 a local minimum, and between those two points,

there is no real zero. Hence, we have the decomposition

p(X) = (Z − α)(X − β)(X − β̄)

with α < 0 and β ∈ C \R. A real plot of the polynomial p is given in Figure 2.5.
The next idea is that outside of the Julia set, there is not always convergence. Namely,

φ(0) = 1, φ(1) = 0

i.e. here we have a cycle of length 2. There are starting points which converge to this cycle.
In Figure 2.6, the Julia set is white; red means convergence to the cycle {0, 1}, beige means
convergence to the zero α, green convergence to the zero β, and blue convergence to the zero β̄.
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Figure 2.5: Plot of x3 − 2x+ 2

Figure 2.6: Newton fractal and Fatou set for z3 − 2z + 2 = 0 (Source: Wikipedia, Author:
Georg-Johann Lay).
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Chapter 3

Polynomials

Let K[X] denote the set of all polynomials with coefficients in K, where K = Q, R or C is the
field of rational, real or complex numbers.

Let f =
∑
ν∈N

aνX
ν ∈ K[X] be a polynomial. For f 6= 0 there exists the number

deg(f) := max {ν | aν 6= 0}

This number is the degree of f . Further, we define

deg(0) := −∞

3.1 Euclidian Algorithm

The Euclidean Algorithm relies on division with remainder :

Division with Remainder

Let f, g ∈ K[X] with g 6= 0. Then there exist q, r ∈ K[X] with deg(r) < deg(g), such that

f(X) = q(X) · g(X) + r(X)

In case r = 0, we write
g | f

(“g divides f”). The largest common divisor lcd(f, g) is a polynomial d ∈ K[X] satisfying:

1. d | f and d | g (i.e. d is a common divisor)

2. e | f and e | g ⇒ e | d (i.e. d is a maximal common divisor)

Notice that the largest commond divisor is not uniquely determined. But we have:

Lemma 3.1.1. Let f, g 6= 0. If d1 and d2 are largest common divisors of f and g, then:

d1 = c2 · d2

with deg(c2) = 0.
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Proof. As d1, d2 are both largest common divisors, we have:

d1 | d2 and d2 | d1

This means:
d2 = c1 · d1 and d1 = c2 · d2

As d1 6= 0 and d2 6= 0, it follows that:

deg(d2) = deg(c1) + deg(d1) and deg(d1) = deg(c2) + deg(d2)

⇒ deg(d2) = deg(c1) + deg(c2) + deg(d2)

⇒ 0 = deg(c1) + deg(c2)

As deg(c1) and deg(c2) are natural numbers, it follows that:

deg(c1) = deg(c2) = 0

The Euclidean Algorithm

“[The Euclidean Algorithm] is the granddaddy of all algorithms, because it is the oldest non-
trivial algorithm that has survived to the present day.”

(Donald Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
2nd edition (1981), p. 318.)

Algorithm 3.1.2 (Euclid). Input: Polynomials a, b ∈ K[X] \ {0}.
Repeat until for some remainder rN+1 = 0 holds true:

a = q0 · b+ r0, deg(r0) < deg(b)

b = q1 · r0 + r1, deg(r1) < deg(r0)

r0 = q2 · r1 + r2, deg(r2) < deg(r1)

...

rN−1 = qN+1 · rN (rN+1 = 0)

Output: rN .

Theorem 3.1.3 (Euklid). The Euclidean Algorithm terminates. The last remainder rN 6= 0 is
the largest common divisor of a and b.

Proof. The sequence deg(rn) ∈ N ∪ {−∞} is strictly decreasing. Hence, there exists a smallest
N , such that rN+1 = 0. Then d := rN 6= 0 is the last non-zero remainder. Now we prove that
rN satisfies the properties of an lcd.

• rN | a and rN | b.

rN−1 = qN+1 · rN ⇒ rN | rN−1
rN−2 = qN · rN−1 + rN ⇒ rN | rN−2

From each preceding equation in Algorithmus 3.1.2 it follows that rN | rn for all n. In
particular, it holds true that:

rN | a and rN | b
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• e | a and e | b ⇒ e | rN . From

e | a = q0 · b+ r0 and e | b

it follows that e | r0. From the next equation of Algorithmus 3.1.2 it then follows that
e | r1 etc. until finally it follows that e | rN .

This proves the assertion.

In general the Euclidean Algorithm works for so-called Euclidean Rings, in which there exists
a division with remainder.

Beispiel 3.1.4. The ring Z of integers is a Euclidean Ring. The role of the function deg is
played by the absolute value |·|:

a = q · b+ r, |r| < |b|

is here the division with remainder.

Importance for Euclid

Euclid himself uses his algorithm in order to prove the Fundamental Theorem of Arithmetic
(Theorem 2.1.2). Over the integers, it can be formulated as follows: Every number n ∈ Z \ {0}
has a representation

n = ±p1 · · · pr
with uniquely determined prime numbers pi up to the ordering of factors.

3.2 Sturm Chain

If the zeros of a polynomial are to be determined, then one can, in the case of small degree,
express the zeros in terms of radicals. This yields an explicit representation of the zeros. An
example is the well-known formula for the solutions of a quadratic equation. There are also
such formula for the zeros of polynomials of degree three and four (the Cardano formulae). If
the degree is five or higher, then we have:

Theorem 3.2.1 (Abel-Ruffini). The general polynomial equation of degree five or higher has
no solution in radicals.

This means that the zeros of a general polynomial cannot be expressed in terms of radicals.
Consequently, for higher degree polynomials, numerical methods for calculating their zeros are
required.

In this section, we solve the problem of finding the number of zeros of a real polynomial
f ∈ R[X] in a given interval [a, b].

First some general statements for K = Q,R or C:

Lemma 3.2.2. Let f ∈ K[X] \ {0}. Then ξ ∈ K is a zero of f if and only if

(X − ξ) | f

holds true.
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Proof. ⇒: Let ξ ∈ K be a zero of f . Division with remainder yields:

f(X) = q(X)(X − ξ) + r(X)

with deg(r) < 1. Now,
0 = f(ξ) = r(ξ)

As deg(r) < 1, it follows that r = 0. Hence, (X − ξ) | f .

⇐: Assume (X − ξ) | f , this implies

f(X) = q(X) · (X − ξ)

It follows that f(ξ) = 0.

A consequence is that a polynomial f ∈ K[X] \ {0} has at most deg(f) zeros in K.

Proof. Let ξ ∈ K be a zero of f . From

f = q · (X − ξ)

it follows that
deg(q) = deg(f)− 1

and after at most deg(f) zeros, this process stops.

For K = C it follows that, a non-constant polynomial f ∈ K[X] has a representation

f(X) = α ·
∏
µ

(X − αµ), α, αν ∈ C

hat.

Definition 3.2.3. A polynomial f ∈ K[X] is sqare-free, if for no non-constant polynomial
g ∈ K[X] it holds true that g2 | f .

Lemma 3.2.4. Square-free polynomials have only simple zeros.

Proof. Let ξ ∈ K be a zero of f ∈ K[X]. Then:

f = q · (X − ξ)

with q(ξ) 6= 0, as f is square-free. We need to show that f ′(ξ) 6= 0. For this, we have:

f ′ = q′ · (X − ξ) + q ⇒ f ′(ξ) = q(ξ) 6= 0

Now, we can define the Sturm chain.

Definition 3.2.5. Let f ∈ R[X] be a polynomial. Then the sequence p0 := f , p1 := f ′,
p2, . . . , pN with

f = q1 · f ′ − p2, deg(p2) < deg(f ′)

f ′ = q2 · p2 − p3, deg(p3) < deg(p2)

p2 = q3 · p3 − p4, deg(p4) < deg(p3)

...

pN−1 = qN · pN (pN+1 = 0)

is called a Sturm chain for f .
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The elements of a Sturm chain are, up to a sign, the remainders occurring in the Euclidean
Algorithm for calculating lcd(f, f ′).

Theorem 3.2.6 (Sturm). Let f ∈ R[X] be square-free, and p0, . . . , pN a Sturm chain for f .
Then for a < b the number of zeros in the interval (a, b] eqals

σ(a)− σ(b)

where σ(ξ) is the number of sign changes in the sequence

p0(ξ), . . . , pN (ξ)

Remark 3.2.7. Sturm’s Theorem also holds true if a Sturm chain p0, . . . , pN is replaced with

α0 · p0, . . . , αN · pN(3.1)

where α0, . . . , αN > 0. The sequence (3.1) is also called a Sturm chain for f . Using the αi, it
is possible to remove denominators in fractions occurring in a Sturm chain.

A Sturm chain tells us if f is square-free or not.

Lemma 3.2.8. f ∈ K[X] is square-free if and only if

lcd(f, f ′) = 1

Proof. ⇒: If d(X) = lcd(f, f ′) is not constant, then d(X) has a zero ξ ∈ C, by the Fundamental
Theorem of Algebra (Theorem 2.1.7). As d divides f and f ′, it follows that

f(ξ) = f ′(ξ) = 0

Hence, the zero ξ is not simple. This implies, by Lemma 3.2.4, that f is not square-free.

⇐: Let lcd(f, f ′) = 1. If f = g2 · q, then:

f ′ = 2gg′q + g2q′ = g · (2g′q + gq′)

Hence, g | lcd(f, f ′) = 1, i.e. g is constant. Hence f is square-free.

What can be done if f is not square-free?

Theorem 3.2.9. Let f ∈ K[X] \ {0}. Then

g :=
f

lcd(f, f ′)

is square-free and has the same zeros as f .

Proof. Let
f = (X − ξ)k · h

with h(ξ) 6= 0. Then
f ′ = k · (X − ξ)k−1 · h+ (X − ξ)k · h′

Hence, (X − ξ)k−1 | f ′ and (X − ξ)k 6 | f ′, as otherwise

(X − ξ)k | f ′ − (X − ξ)k · h′ = k · (X − ξ)k−1

which is impossible. It follows that

(X − ξ)k−1 | lcd(f, f ′) and (X − ξ)k 6 | lcd(f, f ′)

I.e. the multiplicity of the zero ξ in lcd(f, f ′) is One less than its multiplicity in f . Hence, g is
square-free and has the same zeros as f .
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Example 3.2.10. Let f(X) = X3 − 2X2. We would like to count the number of real zeros of
f . Applying Sturm’s method yields the Sturm chain

f, f ′ = 3X2 − 4X,X

and we see that lcd(f, f ′) = X, i.e. f is not square-free. So, we take

g :=
f

lcd(f, f ′)
= X2 − 2X

and obtain the Sturm chain
g, g′ = 2X − 2, p2 = 1

The following table of signs
a >> 0 −a << 0

g + +
g′ + −
p2 + +

σ 0 2

yields
σ(−a)− σ(a) = 2

as the number of real zeros of f (without multiplicities).

3.3 Prime, perfect and narcissistic numbers

In the episode Marge and Homer Turn a Couple Play, just as Tabitha wants to give her husband
a declaration of love, a call appears on the screen in the baseball stadium to estimate the number
of spectators:

a) 8191

b) 8128

c) 8208

d) No way to tell

The first number is a prime number. It is a so-called Mersenne prime number. Such are
prime numbers of the form 2p − 1, where p itself is a prime number. In fact:

8191 = 213 − 1

Mersenne prime numbers are record holders: the ten largest of these are the largest prime
numbers which have been discovered. The largest known prime number is 274207281 − 1, a
Mersenne prime number discovered in the year 2016.

The second number is a perfect number, i.e. a number which equals the sum of its divisors
other than itself. The smallest perfect number is

6 = 1 + 2 + 3

The next one is
28 = 1 + 2 + 4 + 7 + 14
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This one is followed by 496 and by 8128. It is not known whether there are infinitely many
perfect numbers or not. Also unknown to this date is if all perfect numbers are even.

The third number is a narcissistic number. These numbers have the property that the sum
of their digits, each taken to the power of the number of digits, equals the number itself. Indeed,

8208 = 84 + 24 + 04 + 84

It has been proven that there are only finitely many narcissistic numbers. They are 88 in
number, and the largest one is

115 132 219 018 763 992 565 095 597 973 971 522 401
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Chapter 4

Interpolation

Let K = Q,R or C. Let n+ 1 pairs (xi, fi) ∈ K2 and a function Φ(x, a0, . . . , an) be given. The
problem now is to choose the parameters a0, . . . , an in such a way that

Φ(xi, a0, . . . , an) = fi

We consider the linear interpolation problem:

Linear Interpolation Problem

Here,
Φ(x, a0, . . . , an) = a0 · Φ0(x) + · · ·+ an · Φ(x)

with linearly independent functions Φ0, . . . ,Φn.

4.1 Polynomial Interpolation

Here the problem is to find the polynomial P of degree ≤ n which takes the values f(αi) in
n+ 1 distinct places αi.

The space in which the solution is sought, is

K[X]n := {Polynomials of degree ≤ n}

This is a so-called linear interpolation problem: Solve the system of linear equations

P (αi) = f(αi)

depending on a basis bi(X) of the vector space K[X]n. It holds true that

P (X) =
n∑
i=0

ρibi(X) =: Φ(X, ρ0, . . . , ρn)

4.1.1 Standard Basis

The standard basis for K[X]n is

bi(X) = Xi, i = 0, . . . , n
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With respect to this basis, the polynomial has the usual representation

P (X) =
n∑
i=0

ρiX
i

The interpolation problem leads to the linear system of equations1 α0 . . . αn0
...

...
. . .

...
1 αn . . . αnn


︸ ︷︷ ︸

=V (α0,...,αn)

ρ0...
ρn

 =

f(α0)
...

f(αn)



Definition 4.1.1. The matrix V (α0, . . . , αn) is called Vandermonde matrix.

Lemma 4.1.2. The Vandermonde matrix is regular if and only if the αi are pairwise distinct.

Sketch of proof. We have

detV (α0, . . . , αn) =
∏

0≤j<k≤n
(αj − αk)

This determinant is non-zero if and only if the αi are pairwise distinct.

A consequence is:

Theorem 4.1.3. The polynomial interpolation problem has a unique solution.

Proof. According to Lemma 4.1.2, the polynomial interpolation problem has a unique solution
for the standard basis of K[X]n. Hence, it also has a unique solution for an arbitrary basis
b0(X), . . . , bn(X).

Remark 4.1.4. Lemma 4.1.2 is the reason why for n+ 1 distinct points it is required that the
polynomial degree be ≤ n for the polynomial interpolation problem.

Example 4.1.5. Two distinct points in the Euclidean plane determine a unique straight line.
But there are infinitely many parabolas containing these two points.

The method which offers itself for solving the polynomial interpolation problem for the
standard basis is Gauss’ algorithm. However, its complexity of O(n3) is high.

4.1.2 Lagrange Polynomials

The Lagrange polynomials

`i(X) =

n∏
j=0
j 6=i

X − αj
αi − αj

satisfy the property

`i(αj) = δij :=

{
1, i = j

0, i 6= j

δij is the Kronecker delta. The Lagrange polynomials are a basis of K[X]n.
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Proof. Let

B(X) :=
n∑
ν=0

βν`ν(X) = 0

Then

0 = B(αµ) =

n∑
ν=0

βνδνµ = βµ

Hence, the `0, . . . , `n are linearly independent.

The solution of the interpolation problem is given as:

P (X) =

n∑
i=0

f(αi)`i(X)

Proof.

P (αµ) =
n∑
ν=0

f(αν)`ν(αµ) =
n∑
ν=0

f(αν)δνµ = f(αµ)

The coefficients ρi are simply the values:

ρi = f(αi)

A disadvantage of the Lagrange polynomials is that in case a further place αn+1 is taken,
then all `i(X) become different.

Example 4.1.6. We interpolate using the Lagrange polynomials:

f(0) = 3, f(1) = 2, f(3) = 1, f(4) = 0(4.1)

and estimate the Value f(2.5). We have

`0(X) = − 1

12
(X − 1)(X − 3)(X − 4)

`1(X) =
1

6
X(X − 3)(X − 4)

`2(X) = −1

6
X(X − 1)(X − 4)

The interpolation polynomial is

P (X) = 3 · `0 + 2 · `1 + 1 · `2 + 0 · `3 =
1

12

(
−X3 + 6X2 − 17X + 36

)
and f(2.5) = P (2.5) = 1.28125. The polynomial and the values at the places are given in Figure
4.1.
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Figure 4.1: The interpolation polynomial for the values in (4.1).

4.1.3 Newton Polynomials

Let α0, . . . , αn ∈ K be pairwise distinct. The Newton Polynomials are

Ni(X) =
i−1∏
k=0

(X − αk), i = 0, . . . , n

For i > 0 we have:

Ni(αj) =


i−1∏
k=0

(αj − αi), j ≥ i

0, j < i

Hence, the approach

P (X) =
n∑
i=0

ρiNi(X)

leads to the system of linear equations

1 0
1 (α1 − α0)
1 (α2 − α0) (α2 − α0)(α2 − α1)
...

...
. . .

1 (αn − α0) · · ·
n−1∏
i=0

(αn − αi)


ρ0...
ρn

 =

f(α0)
...

f(αn)

(4.2)

since

P (αj) =

j∑
i=0

ρiNi(αj)
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As the coefficient matrix in (4.2) is invertible, it follows that the Newton polynomials N0(X)
to Nn(X) are a basis of K[X]n.

As the coefficient matrix is an upper triangular matrix, the solution can be found by forward
substitution, starting from the top equation

ρ0 = f(α0)

and then substituting this into the second equation:

f(α0) + (α1 − α0)ρ1 = f(α1)

which is one linear equation with one unkown, etc.

4.1.4 Interpolation error

A typical problem is to approximate a continuous function with an interpolation polynomial.
A basis for this is:

Theorem 4.1.7 (Weierstraß). Let f : [a, b]→ R be continuos. Then for every ε > 0 there exists
a polynomial P (X) ∈ R[X] such that

‖f − P‖∞ := max {|f(t)− P (t)| | t ∈ [a, b]} < ε

This gives the interpolation error. Here, the following holds true:

Theorem 4.1.8. Let f : [a, b] → R be (n + 1)-fold continuously differentiable. Then for every
t ∈ [a, b] there exists a ξ ∈ It such that

f(t)− P (t) =
f (n+1)(ξ)

(n+ 1)!
·Nn+1(t)

Here, P (X) is the interpolation polynomial for n+ 1 places α0, . . . , αn.

In the theorem, Nn+1(X) is the (n+ 1)-th Newton polynomial and It the smallest interval
which contains the places α0, . . . , αn and t ∈ R.

Consequence. The following error estimation holds true:

|f(t)− P (t)| ≤
∥∥f (n+1)

∥∥
∞

(n+ 1)!

n∏
ν=0

|t− αν |

where
‖·‖∞ : C[a, b]→ R, g 7→ max {|g(t)| | t ∈ [a, b]}

is the maximum norm on the vector space C[a, b] of continuous functions [a, b]→ R.

Example 4.1.9. Let f(X) = 1
12(−X3 +6X2−17X+36). We want to interpolate this function

in (0, 3), (1, 2), (3, 1). The interpolation polynomial is

P2(X) = 3− 7

6
X +

1

6
X2

The interpolation error is shown in Figure 4.2. It equals the error estimation, as f is a poly-
nomial.
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Figure 4.2: The interpolation error equals the estimate in this example.

4.1.5 Runge’s Phenomenon

As for polynomials P ∈ R[X] it holds true that:

lim
t→±∞

P (t) = ±∞

it is appropriate to interpolate only values of functions with the same limiting behavious. Other-
wise, there will be strong oscillations near the boundary, in particular in the case of equidistant
places.

Runge’s Example

Runge considers

f(x) =
1

1 + x2

on the intervall [−5, 5]. Cf. Figure 4.3.
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Figure 4.3: Interpolation of f with 5 resp. 10 equidistant places (Source: Wikipedia, author:
Mártin Pieper).

4.2 Spline-Interpolation

A spline is an elastic rod (cf. Figure 4.4). It is used in naval architecture for lines without
sudden change of the radius of curvature.
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Figure 4.4: A spline (source: Wikipedia, author: Pearson Scott Foresman).

4.2.1 Polygonal chain

For real places x0 < · · · < xn and values f(x0), . . . , f(xn) there is the knot basis φi(x), used for
piece-wise linear interpolation as in Figure 4.5, such that

φi(xj) = δij

y

φi(X)
1

//
xi−1
•

xi xi+1
• x

OO

Figure 4.5: A knot basis function.

The interpolating function is

P (x) =
n∑
i=0

f(xi)φi(x)

4.2.2 Spline Spaces

Let the interval [a, b] be given with places

a = x0 < x1 < · · · < xn−1 < xn = b

This leads to a partition of [a, b]

Z := {Ii = [xi−1, xi] | i = 1, . . . , n}
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The fineness of the partition Z is

hZ = max {xi − xi−1 | i = 1, . . . , n}

This leads to the spline space for Z:

S
(k,r)
Z [a, b] := {P ∈ Cr[a, b] : P |Ii ∈ R[X]k, i = 1, . . . , n}

where
Cr[a, b] = {f : [a, b]→ R | f is r-fold continuously differentiable}

and P |Ii is the restriction of P to Ii:

P |Ii : Ii → R, t 7→ P (t)

Remark 4.2.1. The spline space S
(k,r)
Z is a vector space.

Interpolation Error

Let qi be an interpolating polynomial on Ii. From Section 4.1.4 we recall that

|f(t)− qi(t)| ≤
∥∥f (k+1)

∥∥
∞

(k + 1)!

k∏
ν=0

|t− αi|

where α0 = xi−1, . . . , αk = xi ∈ Ii = [xi−1, xi] are further places. As

|t− αi| ≤ |xi − xi−1| ≤ hZ

it follows that:

|f(t)− P (t)| ≤
∥∥f (k+1)

∥∥
∞

(k + 1)!
· hk+1

Z

Hence, we have:

Theorem 4.2.2. The interpolation error for interpolating f with P ∈ S(k,r)
Z is given as

|f(t)− P (t)| ≤
∥∥f (k+1)

∥∥
∞

(k + 1)!
· hk+1

Z

Example 4.2.3. For piece-wise linear interpolation we have

P ∈ S(1,0)
Z

Hence, for the interpolation error we have

|f(t)− P (t)| ≤
∥∥f ′∥∥∞ · h2Z

4.2.3 Cubic Splines

A spline P ∈ S(3,2)
Z is called a cubic spline.

Theorem 4.2.4. The interpolating cubic spline P exists and is uniquely determined by the
additional specification of P ′′(a) and P ′′(b).
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Proof. Existence. Each polynomial qi(X) = P |Ii has 4 coefficients. This means there are 4n
parameters. For these there are

• 2n linear equations qi(xi) = f(xi), qi+1(xi) = f(xi)

• n− 1 linear equations for P ′ continuous

• n− 1 linear equations for P ′′ continuous

• 2 linear extra equations through the specification of P ′′(a), P ′′(b)

Hence, there are 4n linear equations in 4n unknowns. I.e. in the case of uniqueness, this system
also has a solution.

Uniqueness. Let P,Q ∈ S(3,2)
Z [a, b] with the same extra specifications. Then

s := P −Q ∈
{
w ∈ C2[a, b] | w(xi) = 0, i = 0, . . . , n

}
=: N(4.3)

More precisely, s ∈ N ∩ S(3,2)
Z [a, b]. For w ∈ N arbitrary, it holds true that:

b∫
a

s′′(x)w′′(x) dx = 0(4.4)

since:

b∫
a

s′′(x)w′′(x) dx =
n∑
i=0

xi+1∫
xi

s′′(x)w′′(x) dx =
n∑
i=0

s′′(x)w′(x)
∣∣xi+1

xi
−

xi+1∫
xi

s′′′(x)w′(x) dx

=
n∑
i=0

s′′(x)w′(x)
∣∣xi+1

xi
− s′′′(x)w(x)

∣∣xi+1

xi︸ ︷︷ ︸
=0

+

xi+1∫
xi

s′′′′(x)︸ ︷︷ ︸
=0

w(x) dx

= s′′(b)︸ ︷︷ ︸
=0

w′(b)− s′′(a)︸ ︷︷ ︸
=0

w′(a) = 0

With w = s it follows for the curvature

b∫
a

∣∣s′′(x)
∣∣2 dx = 0

Hence, s is linear. But as s ∈ N , it follows that: s = 0. Hence, P = Q.

Definition 4.2.5. The cubic spline P with P ′′(a) = P ′′(b) = 0 is called natural.

Remark 4.2.6. The natural cubic spline minimises the total curvature

b∫
a

∣∣f ′′(x)
∣∣2 dx

under all interpolating functions f ∈ C2[a, b].
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Proof. Let P ∈ S(3,2)
Z . Then w := f − P ∈ N (defined as in (4.3)), and it holds true that:

b∫
a

∣∣f ′′(x)
∣∣2 dx =

b∫
a

∣∣P ′′(x) + w′′(x)
∣∣2 dx

=

b∫
a

∣∣P ′′(x)
∣∣2 dx+ 2

b∫
a

P ′′(x)w′′(x) dx

︸ ︷︷ ︸
=0

+

b∫
a

∣∣w′′(x)
∣∣2 dx

︸ ︷︷ ︸
≥0

(The middle integral vanishes according to (4.4)). Hence,
b∫
a
|P ′′(x)|2 dx is minimal.

Calculating the natural cubic splines

We set up the 4n linear equations. Let

qi(X) = a
(i)
0 + a

(i)
1 (X − xi) + a

(i)
2 (X − xi)2 + a

(i)
3 (X − xi)3, i = 1, . . . , n

The condition qi(xi) = f(xi) leads to:

a
(i)
0 = f(xi), i = 1, . . . , n(4.5)

With hi := xi−1 − xi it follows that

qi(xi−1) = a
(i)
0 + a

(i)
1 hi + a

(i)
2 h2i + a

(i)
3 h3i

Then the condition qi(xi−1) = f(xi−1) leads to:

f(xi−1)− f(xi) = a
(i)
1 hi + a

(i)
2 h2i + a

(i)
3 h3i , i = 1, . . . , n(4.6)

The condition q′′1(x0) = q′′n(xn) = 0 leads to:

a
(1)
2 + 3a

(1)
3 h1 = 0, a

(n)
2 = 0(4.7)

The condition q′i(xi) = q′i+1(xi) leads to:

a
(i)
1 = a

(i+1)
1 + 2a

(i+1)
2 hi+1 + 3a

(i+1)
3 h2i+1, i = 1, . . . , n− 1(4.8)

Finally, the condition q′′i (xi) = q′′i+1(xi) leads to:

a
(i)
2 = a

(i+1)
2 + 3a

(i+1)
3 hi+1, i = 1, . . . , n− 1(4.9)

(4.5) to (4.9) simplify to

hia
(i−1)
2 + 2(hi + hi+1)a

(i)
2 + hi+1a

(i+1)
2 = 3

(
f(xi+1)− f(xi)

hi+1
− f(xi)− f(xi−1)

hi

)
,

with i = 1, . . . , n − 1. This is a system of linear equations whose coefficient matrix has the
following form:

A =



2(h1 + h2) h2 0
h2 2(h2 + h3) h3

h3
. . .

. . .
. . .

hn−2 2(hn−2 + hn−1) hn−1
0 hn−1 2(hn−1 + hn)


This matrix is regular, as we know from uniqueness.
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Chapter 5

Numerical Linear Algebra

5.1 The Power Method for Determining Eigen Vectors in the
Example of PageRank

In google’s PageRank, we learn about important properties of stochastic matrices, and also
about the power method for calculating eigen vectors.

The idea behind PageRank is that the importance of a web page depends on the number of
pages pointing to that page and their importance.

Assume that page Pj has `j links to other pages. If there is a link to page Pi (we denote this
here as Pj → Pi), then Pi obtains from Pj the fraction of 1

`j
of its importance. The importance

rank I(Pi) of Pi is the sum of all contributions of pages with a link to Pi:

I(Pi) =
∑
Pj→Pi

I(Pj)

`j
(5.1)

In order to understand (5.1) better, we consider the hyperlink matrix H = (Hij) with

Hij =

{
1
`j
, Pj → Pi

0 otherwise

This has the properties:

• All entries are non-negative.

• The column sum is always either 1 or 0.

Definition 5.1.1. A stochastic matrix is a square matrix with non-negative real entries whose
column sums are all equal to 1.

With the vector I = (I(Pi)), (5.1) can be written as:

I = H · I

i.e. I is an eigen vector of H for the eigen value 1. Such a vector is called a stationary vector
of H.
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Figure 5.1: A miniature internet.

Example 5.1.2. The graph in Figure 5.1 has the hyperlink matrix

H =



0 0 0 0 0 0 1
3 0

1
2 0 1

2
1
3 0 0 0 0

1
2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1

2
1
3 0 0 1

3 0

0 0 0 1
3

1
3 0 0 1

2

0 0 0 0 1
3 0 0 1

2

0 0 0 0 1
3 1 1

3 0


A stationary vector is

I =



0.0600
0.0675
0.0300
0.0675
0.0975
0.2025
0.1800
0.2950


Hence, the most important node is 8.

5.1.1 The power method

For calculating the stationary vector I of the hyperlink matrix H let it be said that:

• H has about 25 thousand million rows and columns.

• Most entries of H are zero.

• On average there are about 10 entries per column.

For these reasons, a fast as possible method for computing I is of interest. This is the power
method :

• start vector I0 6= 0.

• Ik+1 := H · Ik

The principle is Ik → I for k →∞.

In Example 5.1.2, we already have I60 = I.

The following questions arise:

• Does Ik always converge?
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• Is the limit vector independent of the start vector?

• Do the importance ranks contain the desired information?

The answers are three times: No.

The way out is a modification of the hyperlink matrix.

Example 5.1.3. Let the graph 1→ 2 be given. Its hyperlink matrix is

H =

(
0 0
1 0

)

For the start vector I0 =

(
1
0

)
, we have I1 =

(
0
1

)
and I2 = I =

(
0
0

)
. The deeper reason for

this is that node 2 does not have any outgoing links. Such a node is called a dangling node.

If we interpret the PageRank I(Pi) as the fraction of time during which a random surfer
stays on a page, then we can ask for the column sum of I to equal 1. If the surfer is on a
dangling node, then he or she should simply jump to any page.

Example 5.1.4. Let again the graph 1→ 2 be given. Then the random surfer jumps according
to the matrix

S =

(
0 1

2

1 1
2

)

A stationary vector of this matrix is I =

(
1
3
2
3

)
. Now, node 2 is twice as important as node 1,

which agrees with intuition.

We now replace the hyperlinkmatrix H with

S = H +A

where A has for every dangling node the column


1
n
...
1
n

 and zeros otherwise.

An eigen value of a square matrix S is a scalar λ for which there exists a vector v 6= 0 such
that

S · v = λ · v(5.2)

The vector v is called an eigen vector of S for the eigen value λ. The set of all vectors satisfying
(5.2) forms a vector space and is called the eigen space of S for eigen value λ.

For eine stochastc matrix, 1 is the eigenvalue with the largest absolute value.

We now assume that for the eigen values λi of an n× n-matrix S holds true that:

1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|
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Further, we assume that there is a basis v1, . . . , vn of Rn consisting of eigen values of S. Then

I0 = c1v1 + c2v2 + · · ·+ cnvn

I1 = SI0 = c1v1 + c2λ2v2 + · · ·+ cnλnvn

I2 = SI1 = c1v1 + c2λ
2
2v2 + · · ·+ cnλ

2
nvn

...

Ik = SIk−1 = c1v1 + c2λ
k
2v2 + · · ·+ cnλ

k
nvn

As λkj → 0 for k →∞ and j ≥ 2, it follows that:

Ik → I = c1v1, ein stationärer Vektor (k →∞)(5.3)

If |λ2| is very small, then the convergence (5.3) is very fast.

However, not always does 1 = λ1 > |λ2| hold true.

1

ww
2

��

5

^^

3 // 4

@@

Figure 5.2: A cyclic internet.

Example 5.1.5. In the graph of Figure 5.2, we have

S =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



Here, with I0 =


1
0
0
0
0

, we have I5 = I0, i.e. Ik does not converge. The reason is that |λ2| = 1.

Definition 5.1.6. The matrix S is called primitive, if for some m Sm has only positive entries.

The meaning of S being primitive is that for any two pages A,B there is a sequence of links
A→ · · · → B.

Definition 5.1.7. A graph in which for any two nodes A,B there is a directed path A→ · · · →
B, is called strongly connected.
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1 //

��

3

��

// 5 //

�� ��

7

��

oo

2 // 4oo

@@

// 6 // 8oo

OO

Figure 5.3: A subnet in the internet: it is possible to enter {5, 6, 7, 8} by following links, but
not to get out of this subnet.

Example 5.1.8. A stationary vector for Figure 5.3 is

I =



0
0
0
0

0.12
0.24
0.24
0.4


Here, the zero entries are problematic. The reason is that there is a subnet: it is possible to
enter {5, 6, 7, 8} via links, but not possible to escape from this subnet. The corresponding matrix
is

S =



0 0 0 0 0 0 0 0
1
2 0 1

2
1
3 0 0 0 0

1
2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1

2
1
3 0 0 1

2 0

0 0 0 1
3

1
3 0 0 1

2

0 0 0 0 1
3 0 0 1

2

0 0 0 0 1
3 1 1

2 0


This matrix is reducible.

Definition 5.1.9. A square matrix S is called reducible if, after suitable permutations of rows
and columns, it has the form

S =

(
∗ 0
∗ ∗

)
Otherwise, S is called irreducible.

Lemma 5.1.10. If S is irreducible, then there exists a stationary vector whose entries are all
positive.

If one replaces in S all non-zero entries by 1, then one obtains the adjacency matrix of the
network.

Lemma 5.1.11. A graph is strongly connected, if and only if its adjacency matrix is irreducible.

Lemma 5.1.12. Any primitive matrix is irreducible.

The theorem of Perron-Frobenius now delivers what we need:

Theorem 5.1.13 (Perron-Frobenius). Let S be a primitive stochastic matrix. Then:

48



1. 1 is an eigen value of S with multiplicity 1 (i.e. the eigen space for eigen value 1 is
one-dimensional).

2. 1 is the eigen value of S with the largest absolute value, all other eigen values have a
smaller absolute value.

3. The eigen vectors for eigen value 1 have either only positive or only negative entries. In
particular, there exists an eigen vector for eigen value 1 whose sum of entries equals one.

Final modifikation

The final modification is done with a parameter α ∈ (0, 1). With probability α a random surfer
follows matrix S, and with probability 1− α he or she jumps to any page.

Let

1 :=

1 1 . . .
1 1 . . .
...

...
. . .


Then the google matrix is

G = αS + (1− α)
1

n
1

Sometimes, α is called the damping constant.

Remark 5.1.14. The google matrix G is stochastic and primitiv.

Consequence. G has a stationary vector whose entries are all positive and which can be found
by the power method.

α = 1 yields the original network, and for α = 0 we have the complete graph: every node is
equally probable. For using the network structure it is preferred to have α near 1.

Remark 5.1.15. For the second eigen value λ2 of G it holds true that:

|λ2| = α

This means that α should not be too close to 1. Sergey Brin und Larry Page choose α = 0.85.

Application to the internet

The google matrix has the structure

G = αH + αA+
1− α
n

1

With the power method we have

GIk = αHIk + αAIk +
1− α
n

1Ik

Notice that H contains mostly zeros, and that in A and 1 all rows are identical. For computing
the last two summands, one needs to add the importance ranks of the dangling nodes or all
nodes, respectively. This has to be done only once.

It is claimed that after 50-100 iterations, I is sufficiently well approximated. This needs a
few days. It is rumored that the PageRank I is updated about every month.
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5.1.2 Some Topology

“Mmm. . . donuts.” H. Simpson

Inspired by the internet graph of the previous section, we note that graph theory can be
viewed as a subdomain of topology. Topology deals with properties of spaces which remain
unchanged under continuous deformations as stretching and bending, but not e.g. tearing apart.
The aim of this section is to understand Homer’s last line on the blackboard in The Wizard of
Evergreen Terrace (cf. Section 1.6). This line is reproduced in Figure 5.4.

Figure 5.4: Nibbling (followed by a topological deformation) is a topological transformation
allowed by Homer Simpson, in order to transform a donut into a sphere.

First back to graphs. A graph consists of nodes (also called vertices), some of which are
connected with others by edges. Between a pair of nodes there is at most one edge. Let b0 be
the number of connected components and b1 the number of “holes”, then there is a relation to
the number V of vertices and the number E of edges:

Lemma 5.1.16. For finite graphs, it holds true that:

V − E = b0 − b1

Proof. Neither side of the equation changes if an edge is contracted: by this, an edge with two
distinct vertices is replaced by a vertex. By performing edge contractions until only edges are
left which have a single vertex each, then every connected component is a graph with precisely
one vertex. Edges look like “petals”. Every edge corresponds to precisely one hole and vice
versa. Hence, V = b0 and E = b1, and the equation holds true.

The right hand side of the equation in in Lemma 5.1.16 is called Euler charakteristic, und
bi is called i-th Betti number.

Betti numbers also exist in higher dimension: b2 is the number of cavities of a closed
orientable surface t die Anzahl der Hohlkörper einer geschlossenen orientierbaren Fläche (or
also in higher dimension). Orientiable means that the surface has two sides: an interior and an
exterior. The Betti numbers are topological invariants in the sense that they do not change under
continuous deformations. One speaks of a homeomorphism if there is a continuous deformation
between the two objects. For example, a square is homeomorphich to a circle, or a coffee cup
is homeomorphic to a torus (for Homer Simpson: a donut).

For a sphere, the first Betti number is zero, as there is no “hole” or “tunnel”. For a donut,
the first Betti number is two, as there is the exterior hole in the middle, and the tunnel in the
interior. For a sphere with g handles, we have b1 = 2g, as each handle has a contribution of 2:
an exterior hole and an interior tunnel.

For closed orientable surfaces there is the following classification:

Theorem 5.1.17. For every closed orientable surface there is a g ≥ 0, such that it is homeo-
morphic to a sphere with g handles.
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The number g is called the genus of the surface. As the genus is a topological invariant, it
follows that:

Consequence. A donut and a sphere are not homeomorphic.

Proof. A donut has genus 1, whereas a sphere has genus 0. As the genus does not change under
homeomorphismds, it follows that a donut and a sphere cannot be homeomorphic.

As Homer Simpson loves donuts, he allows not only continuos deformations, but also a trans-
formation named nibble. In this way, he can transform a donut into a sphere. The expression
“homeromorphism” offers itself.

Theorem 5.1.18 (Homer Simpson, 1998). Donut and sphere are “homeromorphic”.

Proof. Transform the donut by nibbling until it is homeomorphic to the third object from the
left in Figure 5.4. Afterwards, perform a continuous deformation.

There exist also non-orientable surfaces. In the episode Möbius Dick of the animated sitcom
Futurama1 the space ship Planet Express flies through the Bermuda Tetrahedron. Similar to
the Bermuda Triangle on Earth, there are heaps of lost space ships. There, a four-dimensional
whale appears. The title of this episode is an allusion to this whale. Further, “Möbius” alludes
to the Möbius strip, a non-orientable surface which can be constructed as follows:

Take a rectangular strip and identify the two short sides after a half twist. The result can
be seen in Figure 5.5.

Figure 5.5: A Möbius strip made of paper (Source: Wikipedia, author: David Benbennick).

If one starts in the interior of the surface from some point and walks parallel to the boundary,
then after one revolution, one reaches the starting point, but on the other “side”. After another
revolution, one is again at the starting point on the original “side”. This shows that the surface
has only one side. Hence, it is not orientable.

What kind of surface does one get if one slits the Möbius strip parallel to the boundary?

1created by Matt Groening, the inventor of The Simpsons
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5.1.3 Alexandrov topologies

Definition 5.1.19. Let R ⊂ X × X be a relation. R is called reflexive, if for all x ∈ X we
have

(x, x) ∈ R

R is called transitive, if for all x, y, z ∈ X we have

(x, y) ∈ R and (y, z) ∈ R ⇒ (x, y) ∈ R

We often write
xRy

instead of (x, y) ∈ R.

Pavel Alexandrov (1896–1982) discovered that a reflexive and transitive relation R on a set
X defines a topology, for which every point x ∈ X has a minimal neighbourhood

U(x) = {y ∈ X | (x, y) ∈ R}

Interesting is the case of a partial order ≤ on X. Such is a reflexive and transitive relation
which is furthermore anti-symmetric:

x ≤ y and y ≤ x ⇒ x = y

for all x, y ∈ X. The corresponding topological space is called a T0-space.

Definition 5.1.20. Let R ⊂ X ×X be a relation. Then

R0 = {(x, x) ∈ X ×X}
R2 = R ◦R = {(x, z) ∈ X ×X | there exists y ∈ X such that (x, y) ∈ R and (y, z) ∈ R}

Rn+1 = Rn ◦R

The relation
R∗ =

⋃
n∈N

Rn

is called the reflexive and transitive closure of R.

Example 5.1.21. In geoinformatics, there is the relation bounded-by, for which e.g. a room
in a building is bounded by a wall, and this is bounded by an edge, and that by a vertex. This so-
called incidence topology is the reflexive and transitive closure of bounded-by. This defines a
T0-space, whose points are the volumes, areas, lines and points, viewed as building components.

Example 5.1.22. Another example is the relation

�= is-requirement-for-acquisition-of

on the set

M = {prayer, illumination of the mind, attentiveness, self-observation, knowing of oneself,

repentance, humility, grace of God}

By grace we mean an (unmerited) gift. We have:

prayer � illumination of the mind � attentiveness � self-observation

� knowing of oneself � repentance � humility � grace of God
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Furthermore, the relation � is a partial order. This special case is called total order. This
implies that if one element of M is missing in a person, then the grace of God does not rest on
that person:

For whosoever shall keep the whole law, and yet offend in one point, he is guilty of all

James 2:10

In particular, without humility there is no grace of God! However, ≤ is not the only possible
topology on M . This is to be understood more as an instruction for receiving the grace of God.
In any case, we have

humility � grace of God

repentance � grace of God

The other elements of M are needed for obtaining repentance and humility. Examples are the
parabola of the tollkeeper and the pharisee, as well as the two robbers crucified with Jesus. Saint
John Climacus writes in The Ladder of Divine Ascent:

Some of the faithful, and even of the unfaithful, have been deserted by the passions,

all except one [i.e. pride]; and that one has been left as a paramount evil which fully

takes the place of all the others, for it is so harmful that it can even cast down from heaven.

(Step 26, 62)

For only when we humble ourselves, we become like God:

Take my yoke upon you, and learn of me; for I am meek and lowly in heart:

and ye shall find rest unto your souls.

(Matthew 11:29)

5.2 One equation in one unknown

The problem in this section is: solve the equation

a ·X = b

with given a, b.

Example 5.2.1. Over K = Q or R the inverse a−1 can be computed e.g. with Newton-Raphson
division (cf. Section 2.4.1). Then X = a−1 · b.

Example 5.2.2. Solve
2 ·X ≡ 1 mod 3

Solution: X ≡ 2 mod 3, since:
2 · 2 ≡ 4 ≡ 1 mod 3

and for X ≡ 0 or 1 mod 3 it holds true that:

2 ·X 6≡ 1 mod 3

We found the solution with brute force. Is it possible to do this more efficiently?
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Answer. Calculate
1 = lcd(2, 3) = x · 2 + y · 3

Then
x · 2 ≡ 1 mod 3

E.g. x = 2, y = −1 satisfy this condition.

Theorem 5.2.3. The largest common divisor d = lcd(a, b) of a, b ∈ Z has a linear representa-
tion

d = x · a+ y · b

with x, y ∈ Z.

Consequence. If a and n are coprime, then the congruence

a ·X ≡ b mod n

has a unique solution.

Proof. The euclidean algorithm yields

a = b · q + r, |r| < |b|
b = r · q1 + r1, |r1| < |r|
...

rn−2 = rn−1 · qn−2 + rn, |rn| < |rn−1|

and rn = d. This yields:

r = a− b · q
r1 = b− r · q1 = b− (a− b · q) · q1 = b · (1 + qq1)− a · q1

...

rn−1 = rn−3 − rn−2 · qn−3
d = rn−2 − rn−1 · qn−2

= rn−2 − (rn−3 − rn−2 · qn−3) · qn−2︸ ︷︷ ︸
=rn−2·(... )+rn−3·qn−2

= · · · = a · x+ b · y

The method in the proof of Theorem 5.2.3 is called extended euclidean algorithm.

Consequence. If p is a prime number, then any equation

a ·X ≡ b mod p

with a 6≡ 0 mod p has a unique solution.

In particular, every a 6≡ 0 mod p has a multiplicative inverse modulo p. This means that

Fp := {0, . . . , p− 1}

is a field, if addition and multiplication are taken modulo p. In this field, we have the euclidean
division.
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5.3 Gauß algorithm

The n× n-matrices
Kn×n := {A = (aij) | aij ∈ K}

with entries in a field K form a unitary ring under addition and matrix multiplication. For
n ≥ 2, this ring is non-commutative. This means that the usual calculation laws for + and ·
are valid2 with the exceptions that not every non-zero n×n-matrix is invertible, and in general
the rule A ·B 6= B ·A holds true. E.g. for n = 2:(

0 1
1 0

)(
1 1
0 1

)
=

(
0 1
1 1

)
6=
(

1 1
1 0

)
=

(
1 1
0 1

)(
0 1
1 0

)
Elementary matrices

Let
Eij = (εijpq)

with

εijpq =

{
1, (p, q) = (i, j)

0 sonst

This matrix is called elementary matrix and has a 1 in the i-th row and j-th column, otherwise
0. It holds true that:

Eij · Ek` =

{
Ei`, j = k

0 sonst

Proof. Eij · Ek` = (γrs) with

γrs =
∑
t

εijrtε
k`
ts = εijrjε

k`
js =

{
1, (r, s) = (i, `) und j = k

0 otherwise

By linear combination, other matrices can be built from elementary matrices, e.g.:

I :=

n∑
i=1

Eii (unity matrix)

Diag(α1, . . . , αn) :=
n∑
i=1

αiEii (diagonal matrix)

Mi(α) := I + (α− 1) · Eii (multiplication matrix)

Aij(α) := I + αEij (i 6= j) (addition matrix)

Vij := I − Eii − Ejj + Eij + Eji (transposition matrix)

The meaning of the last three matrices becomes clear through the following examples in K4×4.

Example 5.3.1.

M1(α) =


α

1
1

1

 = I + (α− 1)E11

2The role of the zero is played by the zero matrix, the role of the one by the unity matrix.
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Multiplication from the left and from the right to any 4× 4-matrix yields:

M1(α) ·


α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 =


α · α11 α · α12 α · α13 α · α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44



α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 ·M1(α) =


α · α11 α12 α13 α14

α · α21 α22 α23 α24

α · α31 α32 α33 α34

α · α41 α42 α43 α44


Example 5.3.2.

A23(β) =


1

1 β
1

1

 = I + β · E23

A23 ·


α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44



=


α11 α12 α13 α14

α21 + β · α31 α22 + β · α32 α23 + β · α33 α24 + β · α34

α31 α32 α33 α34

α41 α42 α43 α44



α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 ·A23(β) =


α11 α12 α13 + β · α12 α14

α21 α22 α23 + β · α22 α24

α31 α32 α33 + β · α32 α34

α41 α42 α43 + β · α42 α44


Example 5.3.3.

V24 =


1

1
1

1

 = I − E22 − E44 + E24 + E42

V24 ·


α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 =


α11 α12 α13 α14

α41 α42 α43 α44

α31 α32 α33 α34

α21 α22 α23 α24



α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 · V24 =


α11 α14 α13 α12

α21 α24 α23 α22

α31 α34 α33 α32

α41 α44 α43 α42


Lemma 5.3.4. The matrix Mi(α) is invertible for α 6= 0. Aij(α) is invertible for all α ∈ K.
Vij is invertible. These matrices perform the following operations on a given matrix A with
compatible size:
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• Mi(α) from the left: multiplies the i-th row of A with α.

• Aij(α) from the left: adds α times the j-th row of A onto the i-th row of A.

• Vij from the left: swaps i-th and j-th row of A.

• Mi(α) from the right: multiplies the i-th column of A with α.

• Aij(α) from the right: adds α times the i-th column onto the j-th column of A.

• Vij from the right: swaps i-th and j-th column of A.

The inverses are respectively:

Mi(α)−1 = Mi(α
−1)

Aij(α)−1 = Aij(−α)

V −1ij = Vij

Consequently, for solving a system of linear equations

A · x = b

with A ∈ Km×n and b ∈ Km: we have the Gauß algorithm (with only row operations): Mul-
tiplication from the left with an invertible matrix B ∈ Km×m whose result is the stair-case
normal form

T =


1 ∗ ∗ ∗

1 ∗ ∗
1 ∗ ∗

1


The stair-case normal form yields a basis of the solution space of the homogeneous system

Ax = 0

as follows: insert rows with precisely one −1-entry below every non-step in order to obtain the
extended stair-case

T̃ =



1 ∗ ∗ ∗
−1

1 ∗ ∗
1 ∗ ∗
−1

−1
1


The columns with the new −1’s are a basis of the homogeneous system of equations:

L =

〈


∗
−1
0
0
0
0
0


,



∗
0
∗
∗
−1
0
0


,



∗
0
∗
∗
0
−1
0


〉

This leads to our first decomposition of A:

A = C · T

with C invertible and T in stair-case normal form.

57



5.4 LU decomposition

Let A ∈ Kn×n.

Definition 5.4.1. An LU decomposition of A is a factorisation of the form

A = L · U,

where L is a lower triangular matrix whose diagonal entries are all equal to one, and U is an
upper triangular matrix.

Doolittle algorithm

The doolittle algorithm can under certain conditions obtain an LU decpomposition of A.

Let A0 := A. For ν = 1, . . . , n let Aν := Lν ·Aν−1 = (α
(ν)
ij ) with

Lν = An,ν(`n,ν) ·An−1,ν(`n−1,ν) · · ·Aν+1,ν(`ν+1,ν) =



1 0
. . .

1

`ν+1,ν
. . .

...
. . .

`n,ν 1


and

`i,ν := −
α
(ν−1)
iν

α
(ν−1)
νν

, (i = ν + 1, . . . , n)

Observe that Lν eliminates in the ν-th row of Aν−1 everything below the diagonal. In particular,
we have

U := An−1 = Ln−1 · · ·L1 ·A
is an upper triangular matrix. Then

L := L−11 · · ·L
−1
n−1 =



1 0

−`2,1
. . .

1
... −`ν+1,ν

. . .
... 1

−`n,1 −`n,ν −`n,n−1 1


is a lower triangular matrix whose diagonal entries are all one, and

A = L · U

However, in each step it is used that α
(ν−1)
νν 6= 0. If this is not the case, then swap the ν-th row

with a row below. In the end this yields a PLU decomposition

A = P · L · U

with a permutation matrix P = (πij), where

πij = δi,σ(j)

for a permutation σ of the numbers 1, . . . , n.
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Applications of the LU decomposition

1. Solution of Ax = b with A ∈ Kn×n, b ∈ Kn. The decomposition A = L · U leads to

L (Ux)︸ ︷︷ ︸
=y

= b ; Ux = y

These are two systems of linear equations. The first one is solved by forward substitution,
and the second one by backward substitution (cf. the following paragraph).

2. The inverse of A ∈ Kn×n. Apply 1. simultaneously on every column of I as the right hand
side b.

3. Determinant. It holds true that:

det(A) = det(L) · det(U) = det(U)

Forward substitution

Let a triangular system of linear equations be given:

`11y1 = b1

`21y1 + `22y2 = b2
...

`n1y1 + · · ·+ `nnyn = bn

Then

y1 =
b1
`11

yi =
1

`ii

(
bi −

i−1∑
k=1

`ikyk

)
, i = 2, . . . , n

is the solution if all `ii 6= 0.

Backward substitution

Let the triangular system of linear equations be given:

unnxn = yn

un−1,n−1xn−1 + un−1,nxn = yn−1
...

u11x1 + · · ·+ u1nxn = y1

Then

xn =
yn
unn

xi =
1

uii

(
yi −

n∑
k=i+1

uikxk

)
, i = n− 1, . . . , 1

is the solution, if all uii 6= 0.
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5.4.1 Sorting pancakes

Permutations as in the previous section occurr in The Simpsons in a hidden manner, namely
in the form of the “Municipal House of Pancakes” in Springfield, Homer Simpson’s home town.
This appeared first in the episode The Twisted World of Marge Simpson (1997). Assume that
one of its waiters serves n pancakes in random order. He can reverse pancakes on the serving
plate by taking a few from the top with a fish slice (also called “spatula”) and then flip that
stack. The question now is, how often does he have to flip stacks of pancakes in the worst
case until they are all sorted by size. The number of flips is then called pancake number and is
denoted as Pn. Wanted is a formula which describes Pn.

Computer scientists like sorting data, and there are parallels with pancakes. The number
Pn is only known up to n = 19. This is why the pancake sorting problem is of interest.

One can calculate the pancake number for the first few values of n by going through all
combinations of different-sized pancakes and determining the number of flips.

P1 = 0, as the only pancake is already in the correct order.

P2 = 1, as in the worst case, the big pancake lies on the small pancake, and then there is
one flip.

To determine P3 is already a bit more difficult. Threre are the six possibilities (1, 2, 3),
(1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1), where the number corresponds to the size and the
position from the left corresponds to the position of the pancake from top to bottom. The
number of flips is given in the following table:

Permutation (1, 2, 3) (1, 3, 2) (2, 3, 1) (2, 1, 3) (3, 1, 2) (3, 2, 1)

Number of flips 0 3 3 2 2 1

Hence, P3 = 3.

In the year 1979, an upper bound for Pn was found. Namely:

Theorem 5.4.2 (William H. Gates & Christo H. Papadimitriou, 1979). It holds true that

Pn ≤
5n+ 5

3

William H. Gates is better known as Bill Gates and is a co-founder of the company Microsoft.

David S. Cohen, one of the authors of The Simpsons, published in the year 1995 an article
about the burnt pancake problem, where the objective is to sort pancakes which are burnt on
one side in such a way that they are sorted by size and the burnt side is always facing down.
Let the number of flips in this problem be denoted as Vn. We have:

Theorem 5.4.3 (David S. Cohen, 1995). The following holds true:

3n

2
≤ Vn ≤ 2n− 2

5.5 The Spectral Theorem

5.5.1 Eigen spaces

Let A ∈ Kn×n.

Definition 5.5.1. The eigen space Eλ(A) for the eigen value λ is defined as the solution space
of

A− λ · I
if it is 6= 0.
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Example 5.5.2. Let

A =

(
0 1
1 0

)
Then E1(A) = K ·

(
1
1

)
and E−1 = K ·

(
1
−1

)
Lemma 5.5.3. λ ∈ K is an eigen value of A, if and only if λ is a zero of

fA(X) = det(X · I −A)

The latter is the charakteristic polynomial of A.

Proof. A−λ·I is not invertible, if and only if the corresponding solution space is non-trivial.

Definition 5.5.4. An eigen vector of A is a non-trivial element of an eigen space of A.

5.5.2 Base change

Definition 5.5.5. A matrix A ∈ Kn×n is called diagonalisable, if there exists an invertible
matrix S such that

S−1AS

is a diagonal matrix.

Example 5.5.6. Let

A =

(
0 1
1 0

)
A basis of R2 consisting of eigen vectors of A is given by the following matrix

S =

(
1 1
1 −1

)
It holds true that

S−1 =

(
1
2

1
2

1
2 −1

2

)
After base change, we have

S−1AS =

(
1 0
0 −1

)
Definition 5.5.7. The matrix S−1AS is called similar to A.

Remark 5.5.8. Similar matrices have the same eigen values.

Theorem 5.5.9 (Spektral theorem). Let A ∈ Kn×n be a diagonalisable matrix. Then Kn has
a basis S consisting of eigen vectors of A. The diagonal entries of the diagonal matrix S−1AS
are the eigen values of A.

Proof. Let
S−1AS = Diag(λ1, . . . , λn)

Then we have:
AS = SDiag(λ1, . . . , λn)

Hence, for the i-th column of S, we have:

Asi = λisi

and the basis S of Kn consists of eigen vectors si of A for the eigen value λi.
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Definition 5.5.10. The set

Spec(A) = {λ | λ ist Eigenwert von A}

is the spectrum of A.

5.5.3 Determinant and trace

Let A = (aij) ∈ Kn×n. Then the determinant of A is defined as

det(A) =
∑
π∈Sn

sgn(π)

n∏
i=1

ai,π(i)

where Sn is the set of all permutations of the numbers 1, . . . , n and sgn(π) is the sign of the
permutation π:

sgn(π) =

{
1, π is an even permutation

−1, π is an odd permutation

Example 5.5.11. For n = 1, A = (a) and det(A) = a.

For n = 2,

A =

(
a11 a12
a21 a22

)
and

det(A) = a11a22 − a12a21
As the identical permutation (1) is even and the transposition (12) is an odd permutation.

For n = 3,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


and

det(A) = a11a22a33 + a12a23a31 + a13a32a21 − a13a22a31 − a11a23a32 − a12a21a33

as the identical permutation (1) and the cycles (123) and (132) are even, and the transpositions
(12), (13), (23) are odd.

Definition 5.5.12. The trace trace(A) is defined as the sum of the diagonal entries of A.

Example 5.5.13. Let A =

(
a b
c d

)
. Then

traceA = a+ d, det(A) = ad− bc

Consider the characteristic polynomial:

fA(X) = det(X · I −A) = X2 − (a+ d)X + ad− bc = X2 − trace(A)X + det(A)

If fA(X) = (X − λ1)(X − λ2) with λ1, λ2 ∈ C, then

fA(X) = X2 − (λ1 + λ2)X + λ1λ2

Comparing the coefficients yields:

trace(A) = λ1 + λ2

det(A) = λ1 · λ2
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Lemma 5.5.14. Let A ∈ Cn×n. Then:

trace(A) =
∑

λ∈Spec(A)

λ

det(A) =
∏

λ∈Spec(A)

λ

Proof. We have

det(X · I −A) =
∏

λ∈Spec(A)

(X − λ)

On the right hand side, the constant term equals

(−1)n ·
∏

λ∈Spec(A)

λ

On the left hands side, the constant term equals

det(−A) = (−1)n · det(A)

On the right hand side, the coefficient of Xn−1 equals

−
∑

λ∈Spec(A)

λ

On the left hand side, the coefficient of Xn−1 equals

− trace(A)

Comparing the coefficients yields the assertion.

5.5.4 The Futurama Theorem

First, some preliminary remarks on permutations. Each permutation of the numbers 1, . . . , n
can be written as the product of disjoint cycles as follows: start with 1, the follow with σ(1),
then σ2(1) := σ(σ(1)), etc. until for the first time again σk(1) = 1. This is the first cycle. If in
this cycle, a number in {1, . . . , n} does not occur, then continue as above with one such number.
Etc. At some point, each of the numbers 1, . . . , n occurs in precisely one cycle. This yields a
decomposition of the permutation into disjoint cycles.

In the episode The Prisoner of Benda of Futurama, there is a machine invented by Professor
Farnsworth which swaps minds. If applied to two persons A and B, then afterwards, the mind
of A is in the body of B, and vice versa. In a group of n persons3 all have swapped minds with
different partners, and after some time they all want to get back into their original bodies. The
problem, however, is that the machine will work only once for a given pair of persons.

Ken Keeler, the main author of this episode, faced the problem of figuring out how all minds
can get back into their original bodies. After some effort, he proved the Futurama Theorem:

Theorem 5.5.15 (Ken Keeler, 2010). It suffices to add two more persons, such that each mind
gets back into its original body.

The following proof is developped in the episode on a black board:

3in the episode, there are 8 persons
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Proof. Let π be the permutation of [n] := {1, . . . , n}, which is created by the sequence of mind
swaps.

Case 1. Assume that π is a cycle of length k. Without restriction, we may assume that

π =

(
1 2 . . . k k + 1 . . . n
2 3 . . . 1 k + 1 . . . n

)
Here, the pre-images of the permutation (minds) are on top and the images (bodies) on the
bottom. Let

π∗ :=

(
1 2 . . . k k + 1 . . . n x y
2 3 . . . 1 k + 1 . . . n x y

)
mit x, y /∈ [n]

and let (a b) be the transposition which swaps a and b. Let

σ := (x 1) ◦ (y 2) · · · (y k) ◦ (x 2) ◦ (y 1)

Then

π∗ ◦ σ =

(
1 2 . . . n x y
1 2 . . . n y x

)
(∗)

Hence, only x and y need to swap their minds, which is possible, as they have not yet been
attached to the machine yet.

Case 2. Let π be any permutation of [n]. Decompose π into a product of disjoint cycles,
and apply case 1 up to (∗) on each cycle. Afterwards, swap x with y, if necessary.

5.5.5 Positive definite matrices

Definition 5.5.16. A matrix A ∈ Cn×n is called hermitean, if

A∗ := Ā> = A

where A∗ is the complex conjugate of the transpose of A.

A special case is given by real matrices: a real matrix A is hermitean, if and only if it is
symmetric:

A> = A

Rules of calculation

The following holds true:
(A∗)∗ = A

and

(AB)∗ = B∗A∗

(A∗)−1 =
(
A−1

)∗
whenever the expressions are defined.
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Proof. Let A = (αij), B = (βij), AB = (γij) and A∗ = (α′ij), B
∗ = (β′ij), (AB)∗ = (γ′ij).

Further, let (A∗)∗ = (γ′ij). Then

γ′ij = α′ji = ¯̄αij = αij

Hence: (A∗)∗ = A. Further,

γ′ij = γ̄ji =
∑
k

ᾱjkβ̄ki =
∑
k

β̄kiᾱjk =
∑
k

β′ikα
′
kj

Hence: (AB)∗ = B∗A∗. Further,(
A−1

)∗
A∗ =

(
AA−1

)∗
= I∗ = I

Hence, (A∗)−1 =
(
A−1

)∗
.

Definition 5.5.17. A hermitean matrix A ∈ Cn×n is called positive (semi-)definite, if for all
z ∈ Cn:

z∗Az > 0 (z∗Az ≥ 0)

if z 6= 0.

Remark 5.5.18. If A is hermitean, then z∗Az is real.

Proof. It holds true that
z∗Az = (z∗Az)∗ = z∗A∗z∗∗ = z∗Az

Remark 5.5.19. A symmetric real matrix A ∈ Rn×n is positive (semi-)definite, if and only if
for all x ∈ Rn:

x>Ax > 0 (x>Ax ≥ 0)

if x 6= 0 ist.

Example 5.5.20. The unity matrix I is positive definite. The reason: with z =

z1...
zn

 ∈ Cn
we have

z∗Iz = z∗z =
n∑
i=1

z̄izi =
n∑
i=1

|zi|2 > 0

if z 6= 0.

Example 5.5.21. The symmetric real matrix

A =

 2 −1 0
−1 2 −1
0 −1 2


is positive definite. The reason: with x = (x1, x2, x3) ∈ R3 we have

x>Ax = x>

 2x1 − x2
−x1 + 2x2 − x3
−x2 + 2x3

 = 2x21 − 2x1x2 + 2x22 − 2x2x3 + 2x23

= x21 + (x1 − x2)2 + (x2 − x3)2 + x23 > 0

if x 6= 0.
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Example 5.5.22. A =

(
1 2
2 1

)
is not positive definite. The reason: with z =

(
1
−1

)
we have

z>Az =
(
1 −1

)(−1
1

)
= −2 < 0

but z 6= 0.

Lemma 5.5.23. The eigen values of hermitean matrices are real.

Proof. Let e be an eigen vector of the hermitean matrix A for eigen value λ ∈ C. Then:

R 3 e∗Ae = e∗(λe) = λ · e∗e︸︷︷︸
=γ

and γ > 0 is real. Then also λ is real.

Theorem 5.5.24 (Spektral Theorem II). A hermitean matrix A ∈ Cn×n is diagonalisable and
has only real eigen values. Further, Cn has an orthonormal basis consisting of eigen vectors of
A. If A is furthermore real, then Rn has an orthonormal basis consisting of eigen vectors of A.

Positive (semi-)definiteness can be read off the eigen values.

Remark 5.5.25. Let A ∈ Cn×n be hermitean. Then: A is positive (semi-)definite, if and only
if all eigen values of A are positive (non-negative).

Proof. ⇒. Let e be an eigen vector of A for eigen values λ ∈ R. Then

e∗Ae = e∗λe = λ · e∗e = λ

The expression on the left is positive (non-negative).

⇐. Let z ∈ Cn \ {0} and let {ei} be an orthonormal basis of Cn consisting of eigen vectors
of A, and let λi be the eigen value corresponding to ei. Then z =

∑
i
αiei and

z>Az =
∑
i

ᾱie
>
i

∑
j

αjAej =
∑
i,j

ᾱiαjλj e
>
i ej︸︷︷︸
=δij

=
∑
i

|αi|2λi

The expression on the right is positive (non-negative).

One can construct a hermitean matrix from a not necessarily square matrix:

Lemma 5.5.26. Let A ∈ Cm×n. Then A∗A is hermitean and positive semidefinite.

Proof. We have
(A∗A)∗ = A∗A∗∗ = A∗A

Hence, A∗A is hermitean. Further, for x ∈ Cn:

x∗A∗Ax = (Ax)∗Ax ≥ 0

Hence, A∗A is positive semi-definite.
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5.6 Principal Component Analysis (PCA)

Assume that for n Persons p attributes are measured. This yields n points in Rp as a random
vector X = (X1, . . . , Xn). The aim of the principal component analysis is to project these data
points to a q-dimensional subspace (q < p) in such a way that as little information as possible
is lost, and that redundancy (i.e. correlation) is compressed.

The idea is to make a base change such that the new variables are decorrelated. Then the
covariance matrix is diagonal. The gain is that in case of normally distributed data, the new
variables are statistically independent.

The covariance matrix

Cov(X) = E
(

(X − µ)(X − µ)>
)

= (Cov(Xi, Xj)) ∈ Rn×n (µ = E(X))

is symmetric, hence diagonalisable, according to the Spectral Theorem 5.5.24. It is even positive
semi-definite. Namely, as

Cov(S>X) = S>Cov(X)S = Diag(λ1, . . . , λn)

(let S be an orthonormal basis of Rn consisting of eigen vectors of Cov(X)) the diagonalisation
itself is a covarince matrix. Its diagonal entries are variances, i.e. non-negative. According to
Remark 5.5.25, it follows that Cov(X) is positiv semi-definite.

The columns of
Y := S>X

are called the principal componentes of X. We have:

Var(Yi) = λi

The method is now as follows: Order S in such a way that the eigen values λi are sorted in
ascending order. Choose q with λ1 ≥ . . . λq, such that the quotient

τq :=

q∑
i=1

Var(Yi)

n∑
i=1

Var(Xi)

is large. This expression is between 0 and 1. Notice that

n∑
i=1

Var(Xi) = trace(Cov(X)) = trace(Cov(Y )) =
n∑
i=1

Var(Yi)

is the total variance of X. This is the sum of all eigenvalues. The dimension of q is determined
via the larges eigenvalues.

The principal components also yield the best linear approximation toX: The first component
is the straight line H1 through the center µ = E(X) with smallest error. The second component
is the straight line H2 through µ, and orthogonal to H1, such that the plane spanned by
H1, H2 has smallest error, etc. Finally, we obtain the principal components H1, . . . ,Hq for the
eigenvalues λ1 ≥ . . . λq.
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Figure 5.6: 2 Cluster mit Signal Variance (links) und Noise Variance (rechts). Source:
Wikipedia, author: Rene Andrae.

Fundamental Assumption of PCA

In the principal component analysis it is assumed that the directions of largest variance contain
most of the information.

This assumption, however, is not always satisfied. This shall be seen in the following example
from cluster analysis.

In Figure 5.6 (left), the variance within the two clusters is low compared to the distance
between the clusters. This is why the first component is the x1-axis. This suffices to separate
the clusters. The second component x2 can be neglegted. The total variance is dominated by
the signal, and we have two separated clusters.

In Figure 5.6 (right), the variance within the clusters has the main contribution to the
total variance. It is assumed that variance is generated by noise. This is why this example is
called “noise variance”. The first component is x2. It does not contain any information on the
separability of the clusters.

Summarising, we can say that often, but not always, the dominating principal components
contain most of the information relevant for a given problem.

5.7 Cholesky Decomposition

Let A ∈ Rn×n be symmetric and positive definit.

Definition 5.7.1. A Cholesky decomposition of A is a factorisation

A = G ·G>

where G is a lower triangular matrix with positive entries.

A Cholesky decomposition of A can be calculated as follows: With A = (αij) and G = (γij)
we have

αij =

j∑
k=1

γikγjk, i ≥ j
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This yields:

γij =



0, i < j√
αii −

i−1∑
k=1

γ2ik, i = j

1
γjj

(
αij −

j−1∑
k=1

γikγjk

)
, i > j

Example 5.7.2.

A =

(
a b
b c

)
=

(
γ211 γ11γ21

γ11γ21 γ221 + γ222

)
yields:

γ11 =
√
a

γ22 =
√
c− γ221

γ21 =
b

γ11

Example 5.7.3. a b c
b d e
c e f

 =

 γ211 γ11γ21 γ11γ31
γ11γ21 γ221 + γ222 γ21γ31 + γ22γ32
γ11γ31 γ21γ31 + γ22γ32 γ231 + γ232 + γ233


yields:

γ11 =
√
a, γ22 =

√
d− γ221, γ33 =

√
f − (γ231 + γ232)

γ21 =
b

γ11
, γ31 =

c

γ11

γ32 =
e− γ21γ31

γ22

As an application, we again solve a system of linear equations

Ax = b

with A symmetric, positive definit. Using the Cholesky decomposition A = G ·G> we obtain

G(G>x︸︷︷︸
=:y

) = b und G>x = y

The first equation
Gy = b

can be solved by forward substitution, and the second

G>x = y

by backward substitution (cf. Section 5.4).
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5.8 Gauß-Newton Method

Let m functios r = (r1, . . . , rm) in n variables X = (X1, . . . , Xn) with m ≥ n be given. The aim
is to minimise the quantity

S(X) =

m∑
i=1

ri(X)2

The Gauß-Newton method is iterative. The start is with X = x0 ∈ Rn. This is incremented
by ε:

xs+1 = xs + ε

with ε>ε small. In order to determine the increment, we take a Taylor expansion:

S(xs + ε) ≈ S(xs) +

[
∂S

∂Xi

]>
ε+

1

2
ε>
[

∂2S

∂Xi∂Xj

]
ε

with [
∂S

∂Xi

]
= 2Jr(X)>r

where

Jr(X) =

[
∂ri
∂Xj

]
is the Jacobi matrix ist, and the Hesse matrix is approximated:[

∂2S

∂Xi∂Xj

]
≈ 2Jr(X)>Jr(X)

for r>r small. This yields

S(xs + ε) ≈ S(xs) + 2r>Jr(X)ε+ ε>Jr(X)>Jr(X)ε

Then we need to minimise

∂S

∂ε
(xs + ε) ≈ 2Jr(X)>r + 2Jr(X)>Jr(X)ε

!
= 0

which leads to the normal equations:

J>r (X)Jr(X) · ε = −Jr(X)>r(5.4)

The background is:

• In data modelling, X = β is a parameter vector, for which a model function

y = f(x, β)

is fitted to the data (xi, yi).

• The functions
ri(β) = yi − f(xi, β)

are called the residues.

• The increment solves the normal equations (5.4) with X = β.

• In general, the Cholesky decomposition can be applied.
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Comparison with the Newton method

In the Newton method, the Hesse matrix H(S) is used instead of its approximation with twice
the square of the Jacobi matrix. The increment here is:

ε = −H(S)−1∇S

This implies that the convergence of the Gauß-Newton method is at most quadratic.

5.9 Lisa and Baseball

When in The Lisa Series (2010) Bart’s baseball team The Isotots loose their trainer, Lisa seizes
her chance and becomes their new trainer. However, she has no idea about baseball. But she
meets, by chance, Professor Frink who supports the opinion that baseball can be understood
only by deep mathematical analysis, and gives her a stack of books which she should work
through.

One of these books is The Bill James Historical Baseball Abstract, a collection of the most
important baseball statistics from the real world, compiled by Bill James. Through studying
the books, she manages to lead the Isotots from the bottom of the table upto the second place.
But when she tells Bart in one game not to bat, he disregards her order and wins the game
through a homerun. Consequently, she removes Bart from the team as he believes he is “better
than the laws of probability”. The Isotots continue their winning stroke also without Bart.
In the final game of the Little League State Championship, however, a player drops out. So,
she asks Bart to replace him. He hesitates, as he knows he is facing a dilemma: statistics or
instinct. In the last inning, Bart defys Lisa’s order again. But this time he goes out, and the
Isotots loose the game.

5.10 Inner product spaces

Let V be a K-vector space with K = R or C.

Definition 5.10.1. A map
〈·, ·〉 : V × V → K

with

1. 〈x, y〉 = 〈y, x〉 (conjugate symmetric)

2. 〈αx, y〉 = α〈x, y〉
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (left linear)

3. 〈x, x〉 ≥ 0 mit = 0 nur für x = 0 (positive definite)

for x, y, z ∈ V , α ∈ K is called an inner product. The pair (V, 〈·, ·〉) is called an inner product
space.

Remark 5.10.2. 1. 〈x, x〉 is always real.

2. The following holds true:

〈x, αy〉 = ᾱ〈x, y〉
〈x, y + z〉 = 〈x, z〉+ 〈y, z〉

Hence, an inner product is sesqui-linear.
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3. For K = R, an inner product is symmetric and linear.

Example 5.10.3. Let V = Rn. Then

〈x, y〉 =

n∑
i=1

xiyi = y>x

is the standard inner product.

Example 5.10.4. Let V = Cn. Then

〈x, y〉 =

n∑
i=1

xiyi = y∗x

is the standard inner product.

Example 5.10.5. Let V = C[a, b] = {f : [a, b]→ K | f continuous}. Then an inner product is
given by

〈f, g〉 =

b∫
a

f(t)g(t) dt

The first two axioms of inner product follow from the calculation rules of integrals. As for
positive-definiteness: if f 6= 0, then f(x0) 6= 0 for some x0 ∈ [a, b]. Then there exists an
ε-neighbourhood U of x0, such that

f(x) 6= 0

for all x ∈ U . Then

〈f, f〉 =

b∫
a

|f(t)|2 dt ≥
∫
U

|f(t)|2 dt > 0

Let (V, 〈·, ·〉) be an inner product space.

Definition 5.10.6. The function

‖·‖ : V → R, x 7→
√
〈x, x〉

is called a Norm on V .

Properties of an inner product norm

1. Cauchy-Schwarz inequality.

|〈x, y〉| ≤ ‖x‖ · ‖y‖(5.5)

Proof. If y = 0, then the inequality holds true. If y 6= 0, then let λ = 〈x,y〉
〈y,y〉 . Then:

0 ≤ 〈x− λy, x− λy〉 = 〈x, x〉 − λ〈y, x〉 − λ̄〈y, x〉+ |λ|2〈y, y〉

= 〈x, x〉 − 〈x, y〉〈y, x〉
〈y, y〉

− 〈y, x〉〈x, y〉
〈y, y〉

+
|〈x, y〉|2

〈y, y〉

= 〈x, x〉 − |〈x, y〉|
2

〈y, y〉
This yields

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉
from which the assertion follows.
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2. Because of the Cauchy-Schwarz inequality (5.5), the angle between two vectors x, y ∈
V \ {0} can be defined:

w(x, y) := arccos
〈x, y〉
‖x‖ · ‖y‖

We say that x and y are orthogonal (x ⊥ y), if the angle equals π:

x ⊥ y :⇔ w(x, y) = π ⇔ 〈x, y〉 = 0

3. Homogeneity. For α ∈ K, x ∈ V it holds true that:

‖α · x‖ = |α|‖x‖

4. Triangle inequality. For x, y ∈ V we have:

‖x+ y‖ ≤ ‖x‖+ ‖y‖

Proof. We have

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉︸ ︷︷ ︸
=2<(〈x,y〉)≤2|〈x,y〉|

+〈y, y〉

≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

(∗)
≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2

where in (∗) the Cauchy-Schwarz inequality (5.5) was used.

5. Theorem of Pythagoras. If x1, . . . , xn are pairwise orthogonal, then:

n∑
i=1

‖xi‖2 =

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

(5.6)

6. Parallelogramm identity. For x, y ∈ V it holds true that:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

5.11 QR Decomposition

Let (V, 〈·, ·〉) be an inner product space. We consider the projection operator for u ∈ V .

πu : V → V, x 7→ 〈x, u〉
〈u, u〉

u

Remark 5.11.1. It holds true that
x− πu(x) ⊥ u

Proof. We have

〈x− πu(x), u〉 = 〈x, u〉 − 〈x, u〉
〈u, u〉

〈u, u〉 = 0
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Now, we can orthogonalises linearly independent vectors b1, . . . , bn ∈ V according to Gram-
Schmidt:

u1 = b1, e1 =
u1
‖u1‖

u2 = b2 − πu1(b2), e2 =
u2
‖u2‖

...

un = bn −
n−1∑
i=1

πui(bi), en =
un
‖un‖

Remark 5.11.2. The u1, . . . , un span the same linear subspace as b1, . . . , bn and are pairwise
orthogonal.

Proof. The ui are orthogonal. For n = 1 there is nothing to prove. Let n > 1. Assume by
induction hypothesis that u1, . . . , un−1 are orthogonal. Then for j < n:

〈un, uj〉 =

〈
bn −

n−1∑
i=1

〈bn, ui〉
〈ui, ui〉

ui, uj

〉

= 〈bn, uj〉 −
n−1∑
i=1

〈bn, ui〉
〈ui, ui〉

〈ui, uj〉︸ ︷︷ ︸
=〈ui,ui〉δij

= 〈bn, uj〉 − 〈bn, uj〉 = 0

The space spanned by the ui. The u1, . . . , un are linear combinations of the b1, . . . , bn and are
orthogonal, hence, they are also linearly independent: let

x =
∑
j

αjuj = 0

Then
〈x, ui〉 = αi 〈ui, ui〉︸ ︷︷ ︸

6=0

= 0

Hence, all αi = 0. As there are as many ui as bi, it follows that the ui span the same linear
subspace as the bi.

We have

〈ei, bj〉ei =
〈ui, bj〉
‖ui‖

ui
‖ui‖

=
〈ui, bj〉
〈ui, ui〉

ui = πui(bj)

Also,

〈bk, uk〉 =

〈
uk +

k−1∑
i=1

πui(bi), uk

〉
= 〈uk, uk〉+

k−1∑
i=1

〈πui(bi), uk〉︸ ︷︷ ︸
=0

= 〈uk, uk〉

Hence

πuk(bk) =
〈bk, uk〉
〈uk, uk〉

uk =
〈uk, uk〉
〈uk, uk〉

uk = uk

That is why

bk = uk +
k−1∑
i=1

πui(bi) =
k∑
i=1

πui(bi) =
k∑
i=1

〈ei, bk〉ei
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In matrix form this is with B = (b1 | · · · | bn):

B = Q ·R(5.7)

where
Q = (e1 | · · · | en)

and

R =


〈e1, b1〉 〈e1, b2〉 〈e1, b3〉 . . .

0 〈e2, b2〉 〈e2, b3〉 . . .
0 0 〈e3, b3〉 . . .
...

...
...

. . .

 = Q∗B

Definition 5.11.3. (5.7) is called the QR decomposition of B. The columns of Q are orthonor-
mal, and R is an upper triangular matrix.

Application

Solve a system of linear equations Ax = b with A ∈ Rm×n, m ≥ n, where A has full rank. With
the QR decomposition of A this can be done as follows:

A = QR

with Q ∈ Rm×n, R ∈ Rn×n. Now, solve

Q · Rx︸︷︷︸
=y

= b

in this way:
y = Q>b

and
Rx = y

by backward substitution (cf. Section 5.4).

5.12 Eigenvalue determination using the QR decomposition

Assume that A ∈ Cn×n is non-singular and that all eigenvalues are of distinct absolute values.
Then the following sequence converges to an upper triangular matrix A∞:

Ak = QkRk (QR decomposition)

Ak+1 := RkQk = Qk+1Rk+1 (QR decomposition)

We have:

1. As
Ak+1 = RkQk = Q∗kQkRkQk = Q∗kAkQk

all Ak have the same eigenvalues.

75



2. The eigenvalues of A∞ are the diagonal entries, as the characteristic polynomial is

det

X − a
(∞)
11 ∗

. . .

0 X − a(∞)
nn

 = (X − a(∞)
11 ) · · · (X − a(∞)

nn )

3. If A is symmetric, then the columns of Q = Q1Q2 · · · are the eigen vectors of A, as

A ·Q1Q2 · · ·Qn = Q1R1Q1 · · ·Qn = Q1Q2R2Q2 · · ·Qn = · · · = Q1 · · ·QnAn
and as A is symmetric, it follows that A∞ is a diagonal matrix Diag(λ1, . . . , λn), and

AQ = QA∞ = Diag(λ1, . . . , λn)Q

The property of the matrix Q in the QR decomposition also has a name:

Definition 5.12.1. A matrix A ∈ Rn×n is called orthogonal, if the columns of A are an
orthonormal basis of Rn.

Remark 5.12.2. According to the Spectral Theorem II (Theorem 5.5.24), a symmetric matrix
A ∈ Rn×n is diagonalisable with an orthogonal matrix O:

O>AO is diagonal

as there is an orthonormal basis O of Rn consisting of eigen vectors of A.

Over the complex numbers, the property has a different name:

Definition 5.12.3. A matrix A ∈ Cn×n is called unitary, if the columns of A are an orthonor-
mal basis of Cn.

Remark 5.12.4. According to Spectral Theorem II (Theorem 5.5.24), a hermitian matrix A ∈
Cn×n is diagonalisable with a unitary matrix U :

U∗AU is diagonal

as there is an orthonormal basis of Cn consisting of eigen vectors of A.

5.13 Singular Value Decomposition

Let K = R or C.

Theorem 5.13.1 (Singular Value Decomposition). A matrix M ∈ Km×n has a decomposition

M = UΣV ∗

with U ∈ Km×m unitary, Σ ∈ Km×n diagonal with non-negative entries, and V ∗ ∈ Kn×n

unitary.

Definition 5.13.2. The diagonal entries of Σ are called the singular values of A.

This has a geometric interpretation. Let T : Kn → Km be a linear map. V ∗ = (v1∗, . . . , v∗n)
is an orthonormal basis of Kn, and U = (u1, . . . , unm) is an orthonormal basis of Km, such that

T (v∗i ) = σiui

for the singular value σi.

In the real case, there is the following geometric interpretation: The linear map

T : Rn → Rm

takes the unit sphere in Rn to an ellipsoid in Rm. The positive singular values are then the
lengths of the semi-axes of the ellipsoid (cf. Figure 5.7).
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Figure 5.7: Illustration of the singular value decomposition (source: Wikipedia, autor: Georg-
Johann).

5.13.1 Best Rank-r approximation

Let A ∈ Rm×n. Then the singular value decomposition looks thus:

A = UΣV >

with U ∈ Rm×m orthogonal, Σ ∈ Rm×n diagonal with non-negative entries, and V ∈ Rn×n
orthogonal. Written out, this looks thus:

A = (u1 . . . uk | uk+1 . . . um)


σ1 0

. . .

σk
0 0





v>1
...
v>k
v>k+1

...
v>n


= (u1 . . . uk)

σ1 . . .

σk


v
>
1
...
v>k

+ (uk+1 . . . um)(0)

v
>
k+1
...
v>n


︸ ︷︷ ︸

=0

= (σ1u1 . . . σkuk)

v
>
1
...
v>k

 = σ1u1v
>
1 + · · ·+ σkukv

>
k

Remark 5.13.3. We have
Rank(A) = Rank(Σ) = k

and
Rank(uiv

>
i ) = 1

because every column of uiv
>
i is a multiple of ui.
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For the matrix inner product

A�B :=
∑
i,j

αijβij

with A = (αij), B = (βij) ∈ Rm×n the matrices uiv
>
i are pairwise orthogonal. This is because

for x, u ∈ Rm, y, v ∈ Rm we have

xy> � uv> = (xy1 | · · · | xyn)� (uv1 | · · · | uvn) =
∑
i,j

xiyjuivj

=
∑
j

xyj · uvj = (x · u)
∑
j

yjvj = (x · u)(y · v)

i.e. in case x ⊥ u or y ⊥ v, then xy> ⊥ uv>. We have denoted the standard inner product here
with ·.

We also have:

Theorem 5.13.4. The singular value decomposition decomposes A ∈ Rm×n into a linear com-
bination

A =
k∑
i=1

σiuiv
>
i

of pairwise orthogonal matrices uiv
>
i of rank 1.

For the Frobenius norm
‖A‖F :=

√
A�A

it holds true that ∥∥∥uiv>i ∥∥∥2
F

= uiv
>
i � uiv>i = (ui · ui)(vi · vi) = 1

Hence, by the Theorem of Pythagoras (5.6):

‖A‖2F =
k∑
i=1

∥∥∥σiuiv>i ∥∥∥2
F

=
k∑
i=1

|σi|2 =
k∑
i=1

σ2i

Let Σ be ordered in such a way that σ1 ≥ σ2 ≥ · · · ≥ σk. Then σ1u1v
>
1 is the best rank-1

approximation of A. The squared error is:

∥∥∥A− σ1u1v>1 ∥∥∥2
F

=

k∑
i=2

σ2i

In general,
r∑
i=1

σiuiv
>
i is the best rank-r approximation of A for r ≤ k. The squared error is:

∥∥∥∥∥A−
r∑
i=1

σiuiv
>
i

∥∥∥∥∥
2

F

=

k∑
i=r+1

σ2i
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5.13.2 Data compression as best rank-r approximation

A grayscale image with m ·n pixels can be viewed as a matrix A ∈ Rm×n. In order to store the
full image, all m · n grayvalues must be stored. If the best rank-1 approximation

σ1u1v
>
1

is used, then only m+ n+ 1 values need to be stored. For the best rank-r approximation

r∑
i=1

σiuiv
>
i

there are r(m+ n+ 1) values. For r sufficiently small, this number is smaller than m · n.

The method is as follows: Let

Er := A−
r∑
i=1

σiuiv
>
i

Now, choose r such that

‖Er‖F
‖A‖F

=

√√√√√√√√
k∑

i=r+1
σ2i

k∑
i=1

σ2i

< ε

for a given threshold ε > 0. Then
r∑
i=1

σiuiv
>
i

is the compression of A as best rank-r approximation.

Basic assumption of compression

In this method, it is assumed that the terms σiuiv
>
i for small singular values σi do not contain

relevant information, i.e. they consist of noise.

5.13.3 Linear least squares

Let V = Rm and {a1, . . . , an} ⊆ V linearly independent, and b ∈ V . The task is to find
coefficients ξ1, . . . , ξn ∈ R, such that the error∥∥∥∥∥b−

n∑
i=1

ξiai

∥∥∥∥∥
is minimal. Written out as matrices, this means with A = (a1, . . . , an) ∈ Rm×n the minimisation
of

‖b−Ax‖

where x = (ξ1, . . . , ξn). We consider the situation that the system of linear equations

Ax = b
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is overdetermined. Then a best possible solution of this system is to be found. Geometrically,
this means: find an element of the subspace S ⊆ Rn spanned by a1, . . . , an which has minimal
distance to b.

The solution of this problem can be found by orthogonal projection πS(b) of b onto S:

πS(b) = Ax

For the error vector b− πS(b) it holds true that

b− πS(b) ⊥ S

This is equivalent to

ai ⊥ Ax− b i = 1, . . . , n

⇔ A>(Ax− b) = 0

⇔ A>Ax = A>b (Normal equations)

Remark 5.13.5. A>A is invertible, as a1, . . . , an are linearly independent. But the calculation

of
(
A>A

)−1
should be avoided, as the speed and precision suffers.

With the singular value decomposition A = UΣV > it holds true that

Ax− b = UΣV >x− b = U(ΣV >x︸︷︷︸
=:y

−U>b︸︷︷︸
=:c

)

Hence,
‖Ax− b‖ = ‖Σy − c‖

because

‖Uz‖2 = 〈Uz, Uz〉 = (Uz)>Uz = z> U>U︸ ︷︷ ︸
=I

z = z>z = ‖z‖2(5.8)

This means that we need to find y such that ‖Σy − c‖ is minimal. As Σ is diagonal, we have:

Σy = (σ1y1, . . . , σkyk, 0, . . . , 0)

Hence,
Σy − c = (σ1y1 − c1, . . . , σkyk − ck,−ck+1, . . . ,−cm)

And its norm is minimal for

yi =
ci
σi
, i = 1, . . . , k(5.9)

and yk+1, . . . , yn can be choosen freely. Namely, we have

‖Σy − c‖2 =
m∑

i=k+1

c2i

Hence, the sought for x is
x = V y

with y according to (5.9).
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5.13.4 Condition number of square matrices

Let A ∈ Rn×n, and let the singular value decomposition be

A = UΣV >

with Σ = Diag(σ1, . . . , σn) such that σ1 ≥ · · · ≥ σn.

A is invertible, if and only if σn > 0. Then

A−1 = V Diag
(
σ−11 , . . . , σ−1n

)
U>

Definition 5.13.6.
cond(A) :=

σ1
σn

is the condition number of A.

The condition number indicates, how near A is to a singular matrix. If cond(A) =∞, then
A is indeed singular, if cond(A) >> 1, then A is “almost” singular.

The problem
Ax = b

is called ill-conditioned if cond(A) >> 1, ill-posed if cond(A) = ∞, and otherwise well-
conditioned.

5.13.5 Kabsch algorithm

The task is to find the optimal rotation matrix between paired pointsets in R3. Let the sets be

P = {p1, . . . , pn}, Q = {q1, . . . , qn}

First, form the centroids:

CP =
1

n

n∑
i=1

pi, CQ =
1

n

n∑
i=1

qi

Then replace P,Q with

{p1 − CP , . . . , pn − CP }, {q1 − CQ, . . . , qn − CQ}

and call these points again pi and qi, respectively.

The task is to minimise the quantity

E(U) =
1

n

n∑
i=1

∥∥∥∥∥∥∥Upi︸︷︷︸
=:p′i

−qi

∥∥∥∥∥∥∥
2

For this, write P,Q as 3× n-matrices. We have

nE =
n∑
i=1

∥∥p′i − qi∥∥2 = trace
(

(P ′ −Q)>(P ′ −Q)
)

= trace
(
P ′>P ′

)
+ trace

(
Q>Q

)
− 2 trace

(
Q>P ′

)
=

n∑
i=1

(
‖pi‖2 + ‖qi‖2

)
− 2 trace

(
Q>P ′

)
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Observe that ‖p′i‖ = ‖pi‖ because of (5.8), as U is orthogonal. Maximise

trace
(
Q>P ′

)
= trace

(
Q>UP

)
= trace

(
PQ> · U

)
where PQ> ∈ R3×3. The latter equation holds true in general as a rule for the trace. The
singular value decomposition is

PQ> = V ΣW>

Then the optimal rotation is

U = W

1 0 0
0 1 0
0 0 d

V >

with
d = sgn

(
det
(
PQ>

))
An application of the Kabsch algorithm is e.g. in the orientation of satellites.

5.14 Hilbert Spaces

Let (V, 〈·, ·〉) be an inner product space. The associated norm is

‖·‖ : V → R, x 7→
√
〈x, x〉

Definition 5.14.1. If (V, ‖·‖) is complete, then (V, 〈·, ·〉) is called a Hilbert space.

Definition 5.14.2. If b1, b2, · · · ∈ V with ‖bν‖ = 1 and bµ ⊥ bν for µ 6= ν, and if for every
x ∈ V :

x =
∞∑
ν=1

ανbν

for certain αν ∈ K, then the sequence b1, b2, . . . is called an orthonormal basis of V .

Remark 5.14.3. Such an orthonormal basis is in general not a basis in the sense of linear
algebra!

Theorem 5.14.4. Every Hilbert space has an orthonormal basis.

Remark 5.14.5. For x =
∞∑
ν=1

ανbν we have

〈x, bµ〉 =

∞∑
ν=1

αν 〈bν , bµ〉︸ ︷︷ ︸
=δνµ

= αµ

Definition 5.14.6. The expression
〈x, bµ〉

is called Fourier coefficient of x with respect to the orthonormal basis b1, b2, . . . .
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Example 5.14.7. Let V = C[−π, π] with the inner product

〈f, g〉 =

π∫
−π

f(t)g(t) dt

Then

ek(t) =
1√
2π
eikt

is an orthonormal basis of V . The orthogonality relations hold true because

〈ek, e`〉 =
1

2π

π∫
−π

ei(k−`)t dt =
1

2π

π∫
−π

cos(k − `)t dt+ i
1

2π

π∫
−π

sin(k − `)t dt = δk,`

The k-th Fourier coefficient is

〈f, ek〉 =
1√
2π

π∫
−π

f(t)e−ikt dt

The orthogonal basis property of the ek says furthermore that every signal is a superposition
of pure sine waves which occur as harmonics. In a vibrating string, the k-th harmonic can be
made audible by touching the string at the place 1

k−1 (cf. Figure 5.8).

Figure 5.8: Harmonics of a vibrating string (Source: Wikipedia, author: Qef).
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5.14.1 40000 decimals of π

In the episode Marge in Chains (1993), Marge faces a court trial for shop-lifting. Her attorney
wants to cast doubt on the supposed witness Apu Nahasapeemapetilon by hinting on the possi-
bility that his memory might be wrong. Apu replies that he can tell the π up to the 40, 000-th
place after the decimal point. This digit is a 1.

If Apu had had a time machine, then he could have checked the Bailey-Borwein-Plouffe
formula in the year 1995, which gives any decimal of π without knowledge of the decimals
coming before it. However, the formula uses the hexa-decimal system.

Theorem 5.14.8 (Bailey-Borwein-Plouffe formula, 1995). It holds true that

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
In the hexa-decimal representation of π this means

π =

∞∑
k=0

zk
16k

with
zk =

⌊(
16k−1π mod 1

)
· 16
⌋

Then, according to Theorem 5.14.8,

16n−1π = 4σ1 − 2σ4 − σ5 − σ6

with

σ` =
∞∑
k=0

16n−k−1

8k − `

From each summand, the integer part needs to be removed. This can be done as follows: change
σ` to

σ′` =
n−1∑
k=0

(
16n−k−1 mod (8k + `)

)
8k + `

+
∞∑
k=n

16n−k−1

8k + `

Then
16n−1π ≡ 4σ′1 − 2σ′4 − σ′5 − σ′6 ≡ θn mod 1

where θn ∈ [0, 1). Then
zn = b16 · θnc

is the wanted place in the decimal system. We used

bxc := n ∈ Z with x− n ∈ [0, 1)

Then one can calculate on a machine that z40 000 = 1.
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Chapter 6

Trigonometric Functions

6.1 Discrete Fourier Transformation

Let ζ = e2πi/N ∈ C be a primitive N -th root of unity. This is a complex solution to the equation

XN = 1

All solutions of this equation are powers of ζ:

ζ0, ζ1, . . . , ζN−1

From these we form the vectors

z =
(
1, ζ, ζ2, . . . , ζN−1

)
∈ CN

zk =
(

1, ζk, ζ2k, . . . , ζ(N−1)k
)
∈ CN

By indexing the vectors in CN as follows:

f = (f0, . . . , fN ) ∈ CN

we obtain a notation for the standard inner product on CN as follows:

〈a, b〉 =
N−1∑
ν=0

aν b̄ν

Lemma 6.1.1. The vectors z0, . . . , zN−1 form an orthogonal basis of CN .

Proof. This follows from the orthogonality relations:

〈zk, z`〉 =
N−1∑
ν=0

ζνkζ−ν` =
N−1∑
ν=0

e
2πi
N

(k−`)ν = Nδk`(6.1)

Latter equality holds true, as ξ = ζk−` for k 6= ` is an N -te root of unity, and

0 =
1− ξN

1− ξ
= 1 + ξ + · · ·+ ξN−1

Hence, we have N pairwise orthogonal vectors in CN .
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A consequence is that a vector f ∈ CN has a coordinate representation with respect to
z0, . . . , zN−1:

f =
N−1∑
k=0

αkz
k

The coefficient αk can be calculated as

αk =
1

N

N−1∑
ν=0

α`Nδk` =
1

N

N−1∑
`=0

α`〈z`, zk〉 =
1

N

〈
N−1∑
`=0

α`z
`, zk

〉
=

1

N
〈f, zk〉

The quantity 〈f, zk〉 is called discrete Fourier coefficient of f . It has the representation

bk := 〈f, zk〉 =
N−1∑
ν=0

fνζ
−kν = Φ(ζ−k)

with the polynomial

Φ(X) =
N−1∑
ν=0

fνX
ν ∈ C[X]

Remark 6.1.2. The discrete Fourier coefficient bk is periodic:

bk = bk+N

This follows from

Φ
(
ζ−k

)
= Φ

(
ζ−k−N

)
as

ζ−k−N = ζ−kζ−N =
ζ−k

ζN
= ζ−k

since ζN = 1.

Definition 6.1.3. The vector
F(f) = (b0, . . . , bN−1)

is called the discrete Fourier transform (DFT) of f .

Remark 6.1.4. F is multiplication with F ∗, where F is the Vandermonde matrix:

F =


1 1 . . . 1
1 ζ . . . ζN−1

...
...

...

1 ζN−1 . . . ζ(N−1)(N−1)


The orthogonality relations say:

F−1 =
1

N
F ∗

A consequence is

fk = 〈F(f), z−k〉 =
1

N

N−1∑
ν=0

bνe
2πi
N
kν =

1

N
Φ̃(ζk)

with the polynomial

Φ̃(X) =
N−1∑
ν=0

bνX
ν ∈ C[X]

for the inverse discrete Fourier transformation (IDFT).
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6.1.1 Fast Fourier Transformation

We use the notations of the previous section, only that now an additional index N is used. I.e.
ζN = e2πi/N is the primitve N -th root of unity, and let

zkN =
(

1, ζkN , ζ
2k
N , . . . , ζ

(N−1)k
N

)
∈ CN

Further, we assume that N = 2n is a power of two. We decompose the vector

f = (f0, . . . , fN−1) ∈ CN

into an even and an odd part:

f = g̃ + ũ

g̃ = (f0, 0, f2, 0, . . . , fN−2, 0)

ũ = (0, f1, 0, f3, . . . , 0, fN−1)

Removing the zeros yields:

g = (gµ) ∈ CN/2, gµ = g̃2µ

u = (uµ) ∈ CN/2, uµ = ũ2µ+1

The discrete Fourier coefficient bk,N also has a decomposition:

bk,N := 〈f, zkN 〉 = 〈g̃, zkN 〉+ 〈ũ, zkN 〉

Here,

〈g̃, zkN 〉 =

N/2−1∑
µ=0

g̃2µe
− 2πi

N
(2µ)k =

N/2−1∑
µ=0

g̃2µe
− 2πi
N/2

µk
=

N/2−1∑
µ=0

gµζ
−µk
N/2 = 〈g, zkN/2〉

〈ũ, zkN 〉 =

N/2−1∑
µ=0

ũ2µ+1e
− 2πi

N
(2µ+1)k = e−

2πi
N
k

N/2−1∑
µ=0

ũ2µ+1e
− 2πi
N/2

k
= ζkN 〈u, zkN/2〉

Hence,
bk,N = 〈g, zkN/2〉+ ζkN 〈u, zkN/2〉, k = 0, . . . , N − 1

i.e. the Fourier coefficient for N decomposes into a Fourier coefficient for N/2 and a “twisted”
Fourier coefficient for N/2. Further:

zkN/2 = z
k+N/2
N/2

and
ζ
k+N/2
N = ζ

N/2
N ζkN = −ζkN

Hence:

bk,N =

{
〈g, zkN/2〉+ ζkN 〈u, zkN/2〉, k < N/2

〈g, zk−N/2N/2 〉+ ζ
k−N/2
N 〈u, zk−N/2N/2 〉, k ≥ N/2

Hence, the DFT at length N reduces to the DFT at length N/2, and we can continue in this
way, until we arrive at length 2. This yields a divide-and-conquer algorithm for computing the
discrete Fourier coefficient at length N = 2n.
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6.1.2 Fourier series

It is known that every integrable function f : [0, L] → R with f(0) = f(L)1 can be expanded
into a Fourier series:

f(x) =
∞∑

k=−∞
βke

2πikx/L

For the Fourier coefficient βk (k ∈ Z) it holds true that

βk =
1

L

L∫
0

f(x)e−2πikx/L dx = 〈f, ek〉(6.2)

with

ek : [0, L]→ C, x 7→ 1

L
e2πikx/L

Discrete Approximation of Fourier Coefficients

By assuming an equidistant sampling of the periodic function f , we first obtain the partitioning
of the interval [0, L]:

h =
L

N
, xν = νh, ν = 0, . . . , N − 1

and the values
fν = f(xν)

Then, using the left Riemann sum approximation of the integral:

βk =
1

L

L∫
0

f(x)e−2πikx/L dx =
1

L

N−1∑
ν=0

(ν+1)L/N∫
νL/N

f(x)e−2πikx/L dx ≈ 1

L

L

N

N−1∑
ν=0

fνe
− 2πi

N
νk =

1

N
bk

where bk is the discrete Fourier coefficient. The left Riemann sum approximation is as follows:

f(x) ≈ fν , x ≈ νL

N

where x ∈
[
νL
N ,

(ν+1)L
N

]
.

Remark 6.1.5. The approximation

βk ≈
bk
N

is good only for small |k|, because bk is periodic, while often βk → 0 for |k| → ∞.

Approximiated Fourier series

Let N from Remark 6.1.5 be even and αk = bk
N . Then

αk ≈ βk, k = 0, . . . , N/2− 1

αk = αk+N ≈ βk, k = −N/2, . . . ,−1

and we approximate:

f(x) ≈
N/2∑

k=−N/2

αke
2πikx/L

1The condition means that f can be extended to a periodic function on R.
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Digital Signal Transmission

In order to transmit an anlog signal f : [0, L] → R, one samples N values equidistantly and
obtains (normalised, periodic) discrete Fourier coefficients αk (k ∈ Z). Transmit these for
k = −N/2, . . . , N/2 to the desired place and there reconstruct the analog signal

N/2∑
k=−N/2

αke
2πikx/L

The result is a smoothing or compression of the signal, where the high-frequency parts are
omitted.

6.2 Trigonometric Interpolation

We now pose ourselves the problem to interpolate a 2π-peridic function f at equidistant places
with trigonometric sums. I.e. for our function f it holds true that

f(x+ 2π) = f(x)

and the trigonometric sums have the form:

Tn(x) =

n∑
k=0

γke
ikx

The interpolation interval is [0, 2π] with equidistant places

xk =
2π

n+ 1
k, k = 0, . . . , n

Theorem 6.2.1. The trigonometric interpolation problem has a unique solution. I.e. for
y0, . . . , yn ∈ C there is one and only one function

Tn(x) =
n∑
k=0

γke
ikx

with Tn(xν) = yν for ν = 0, . . . , n.

Proof. Set ω = eix, ωk = eixk = e
2πi
n+1

k and

Pn(X) =
n∑
k=0

γkX
k

Then

Tn(x) = Pn(ω)

yν = Tn(xν) = Pn(ων)

As the interpolation polynomial Pn(X) is uniquely determined by Theorem 4.1.3, it follows that
also Tn(x) is uniquely determined.
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Calculating the coefficients

The coefficients γk of the trigonomatric interpolation polynomial Tn(x) can be calculated as
follows:

γk =
1

n+ 1

n∑
ν=0

yνe
−iνxk =

1

n+ 1

n∑
ν=0

yνω
−ν
k

Proof.

n∑
ν=0

yνω
−ν
k =

∑
ν=0

Pn(ων)ω−νk =

n∑
ν=0

n∑
`=0

γ`ω
`
νω
−ν
k =

n∑
ν=0

n∑
`=0

γ`ω
`−k
ν

where the last equality holds true because

ωνk = e
2πi
n+1

kν = ωkν

Hence,

n∑
ν=0

yνω
−ν
k =

n∑
ν=0

n∑
`=0

γ`ω
`−k
ν =

n∑
`=0

γ`

n∑
ν=0

ω`−kν
(∗)
=

n∑
`=0

γ` · (n+ 1)δk,` = γk(n+ 1)

which implies the assertion. Here (∗) holds true because of the orthogonality relations (6.1).

6.3 Multiplication of Large Numbers

An application of fast multiplication of large numbers occurs in the encryption of data in the
internet. This will be treated in Section 7.1.

6.3.1 Multiplication via complex DFT

The multiplication of two m-digit natural numbers by using the school method reduces to m2

multiplications of 1-digit numbers. For large m, this is very inefficient.

A first idea for dealing with this problem is to view numbers as polynomials. In this way,
e.g. the numebr q = 5821 in its decimal representation is

q = 1 + 2 · 10 + 8 · 102 + 5 · 103 = Q(10)

for the polynomial
Q(X) = 1 + 2X + 8X2 + 5X3 ∈ Z[X]

The product of two numbers is thus given by the product R(X) = P (X) ·Q(X) of two polyno-
mials with subsequent evaluation

pq = R(10)

This works not only for decimal numbers, but also for any basis g of a g-adic representation of
numbers:

a =
n∑
i=0

aig
i

with ai ∈ {0, . . . , g − 1}.
The problem with this approach is that the direct multiplication of two polynomials of

degree n − 1 also uses n2 multiplications. The goal is now to accelerate these multiplications.
Assume that degR = m− 1 ist. Then we consider the following method:
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1. Evaluate P and Q at m places x0, . . . , xm−1.

2. R(xs) = P (xs) ·Q(xs) evaluates R at m places.

3. Determine from this the coefficients of R (i.e. interpolate).

Step 2 uses only m multiplications. Hence, we need efficient ways to realise Steps 1 and 3.

It helps to take for xs m-th roots of unity, i.e. solutions of the equation Xm = 1. Then

xs = e−2πis/m = ω−s

with the primitive m-th root of unity ω = e2πi/m. The evaluation of a polynomial A(X) =
m−1∑
t=0

atX
t at the place xs is thus

ãs = A(ω−s) =
m−1∑
t=0

ate
−2πist/m

which is nothing else than the s-th coefficient of the discrete Fourier transformation (DFT).
These Fourier coefficients can be computed efficiently with the Fast Fourier Transformation
(FFT), as seen in Section 6.1.1. Now, we have

Theorem 6.3.1 (Convolution Theorem). The Fourier coefficients of a product R(X) = P (X) ·
Q(X) are the products of the Fourier coefficients of the polynomials P (X) and Q(X).

A consequence is that the Fourier coefficients of the product R(X) can be obtained via the
inverse DFT (IDFT). More precisely, we have

at =
1

m
Ã(ω̄−t) =

1

m

m−1∑
s=0

ase
2πist/m(6.3)

where Ã(X) =
m−1∑
s=0

ãsX
s is the Fourier-transformed polynomial of A(X). (6.3) says that the

IDFT can also be computed with FFT, where the root of unity ω is replaced by its complex
conjugate ω̄.

This method is a lot more efficient for large numbers than the naive multiplication. However,
by using the DFT over the complex numbers, one can have rounding errors.

6.3.2 Multiplication via modular DFT

In order to use the FFT method for multiplying polynomials in order to multiply large numbers
without obtaining rounding errors, one can work in congruences modulo a large number of the
form N = 22

w
+ 1. For large N , a product of integers p · q is the same thing as p · q mod N .

The advantage of this choice of N is that, because

22
w ≡ −1 mod N und 42

w ≡ 22·2
w ≡

(
22
w)2 ≡ 1 mod N

4 is a primitve 2w-th root of unity. This means that 2k-th roots of unity for k ≤ w are powers
of 2. The Fourier transformation with 2k-th roots of unity N can be computed efficiently by
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using shift operations on binary numbers. This can be exploited to compute the multiplication
of large integers with n bits via modular arithmetic with a time-complexity of

O(n log(n) log(log(n)))

which is a lot mor efficient than the school method with time-complexity O(n2). It is conjectured
that O(n log(n)) is a lower complexity bound for the multiplication of two large integers.

Both, the complex as well as the modular version of the DFT-method for multiplication of
large numers are known as the Schönhage-Strassen algorithm.

6.4 Euler’s Formula and the existence of God

The equation
eiπ + 1 = 0

by Leonhard Euler appears as a booktitle in Lisa’s collection with which she prepares for her
career as baseball trainer.

Another appearance of this equation is in Homer3, where it appears to Homer Simpson in
the third dimension.

For some, this formula is a proof of the existence of God, as in it are united the different
mathematical disciplines: arithmetic (0 and 1), algebra (i), geometry (π), and analysis (e), a
fact which cannot be a coincidence.

However, the nature of God cannot be grasped with our limited human mind.

Although rational arguments for the existence of God are remarkable and also used by the
Fathers of the Church, knowledge of God coming from personal spiritual experience is of much
greater significance. This is expressed in the beatitudes:

Blessed are the pure in heart: for they shall see God. (Matthew 5:8)

The Holy Fathers of the Church confess the truth of this statement, as they were granted
the vision of God after a purification process in which they cleansed the eye of the soul2 from
all stains produced by sin such that they could see with it the Uncreated Light. They say
that anyone can reach this state of soul by Holy Baptism into the Orthodox Church, and
afterwards (as we keep falling into sin) by struggling against the passions and by meticulously
examining one’s conscience, and in repentance exposing before a priest during Holy Confession
all impurities of the soul.

Orthodox Tradition is not about speculative reasonings about God, the aim is rather the
participation in divine life. The prophets, apostles and saints experienced this participation and
showed the way to it. They speak thereby of experiences which are not expressible in human
words. The path to this goal of spiritual life is first of all the knowledge that I, in my present
fallen state, am not able to fulfill God’s commandments. Then I walk on the path of repentance3

and am ready to cooperate with God on the healing of my nous. This is called synergy. The

2Greek: νoυς (nous). this word does not have an adequate expression in Western languages. It describes the
organ of the soul with which a person can communicate with God. Due to the fall into sin, this organ has become
ill and needs healing. In a spiritually healthy person, it works correctly and enables him to participate in divine
life.

3gr. metanoia
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Church sees itself as a hospital and applies the medication (the mysteries) inspired by the Holy
Spirit. Christ himself is the doctor. The person healed in the Church is able to participate in
divine life and is also capable of selfless love according to the divine commandment.

Thus Orthodoxy is the path

purification � illumination � glorification

with � as in Example 5.1.22, which stands ready for every person and begins with the purifica-
tion of the nous. If during this process one has the impression of being already on the stage of
illumination, then this is a sure sign of illusion and deep fallenness. For in this case one has not
reached true humility. In any case, it is highly recommended to speak with a spiritual father
about your spiritual state. The spiritual father should be chosen according to what you know
about his own progress on the path of spiritual struggle, preferably already having reached the
state of illumination.
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Chapter 7

Cryptography

7.1 RSA Cryptography

RSA1 is an asymmetric cryptographic method for encryption or for digital signatures.

7.1.1 Euler’s Phi function

Euler’s Phi function phi(n) gives for every natural number n the amount of numbers between
1 and n which are prime to n:

φ(n) := |{a ∈ N | 1 ≤ a ≤ n and lcd(a, n) = 1}|

The Phi function is weakly multiplikative, i.e. for coprime m,n the following holds true:

φ(m · n) = φ(m) · φ(n)

E.g.
φ(18) = φ(2) · φ(9) = 1 · 6 = 6

Remark 7.1.1. φ(n) is the number of invertible elements modulo n.

In order to calculate φ(n) we can say:

Lemma 7.1.2. If p is a prime number, then:

1. φ(p) = p− 1

2. φ
(
pk
)

= pk ·
(

1− 1
p

)
for k ≥ 1.

Proof. 1. p is coprime to all numbers between 1 and p − 1, but not to p. These are precisely
p− 1 numbers.

2. pk is coprime to precisely the numbers p · 1, p · 2, . . . , p · pk−1 between 1 and pk. These are
precisely

pk − pk−1 = pk ·
(

1− 1

p

)
numbers.

1named after R.L. Rivest, A. Shamir und L. Adleman
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From the prime number decomposition of n:

n =
∏
p|n

pαp

and the weak multiplicativity of Φ we obtain the formula

φ(n) =
∏
p|n

pαp
(

1− 1

p

)
= n

∏
p|n

(
1− 1

p

)

Important for cryptography is the Theorem of Fermat-Euler:

Theorem 7.1.3 (Fermat-Euler). If lcd(a, n) = 1, then

aφ(n) ≡ 1 mod n

7.1.2 RSA crypto system

RSA is an asymetric cryptographic method which uses pairs of keys. The private key is used
for decryption or for signing data, and the public key is for encryption or checking a signature.
The private key is kept secret, and is difficult to compute from the public key.

The public key is a pair (e,N), and the private key is a pair (d,N). N is called the RSA
module, e the private exponent and d the public exponent. The keys are generated as follows:

1. Randomly choose two stochastically independent prime numbers p 6= q, for which holds
true that

0.1 < |log2 p− log2 q| < 30

In practice, numbers of corresponding lengths are generated and checked with a prime
number test.

2. Calculate the RSA module N = p · q and Euler’s Phi function

φ(N) = (p− 1) · (q − 1)

3. Choose a number e prime to φ(N) with 1 < e < φ(N). This is the public exponent.

4. Calculate the private exponent d as the solution of

e · d ≡ 1 mod φ(N)(7.1)

Remark 7.1.4. The congruence (7.1) is solved with the extended Euclidean algorithm (Theorem
5.2.3). For reasons of efficiency, e is not chosen too big. A usual choice is the fourth Fermat
number:

e = 216 + 1 = 65537

e should not be smaller, in order to not give further possibilities for attack.

The encryption of a message m is done thus:

c ≡ me mod N

The secret code c is then sent to the receiver whose public key is (e,N). It must be made sure
that 1 < m < N .
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The secret code is decrypted with the private key (d,N) as follows:

m ≡ cd mod N

This works, because
1 = lcd(e, φ(N)) = d · e+ k · φ(N)

Namely,

cd ≡ md·e (∗)
≡ md·e+k·φ(N) ≡ m1 ≡ m mod N

where (∗) holds true because mφ(N) ≡ 1 mod N according to Fermat-Euler (Theorem 7.1.3).

Example 7.1.5. Key generation for person B.

1. Choose p = 11 and q = 13 as prime numbers.

2. The RSA module is N = p · q = 143. φ(N) = 10 · 12 = 120.

3. Choose e = 23: e is prime to N and smaller than N .

4. The extended Euclidean algorithm (Theorem 5.2.3) yields:

1 = lcd(23, 120) = 23 · d+ k · 120

with d = 47 and k = −9. Hence, d = 47 is the private exponent.

The sender A wants to send to B an encrypted message m = 7. For this, A calculates:

723 ≡ 2 mod 143

B decrypts the secret code c = 2:
247 ≡ 7 mod 143

Hence, the plain text message is m = 7.

7.1.3 Binary Exponentiation

Encryption and decryption of a message m is done by exponentiaton. Integer powers can be
computed efficiently by “continued squaring and occasional multiplication”. This works for real
numbers, matrices, elliptic curves, or in general in any semi-group, i.e. when an operation on a
set satisfies the associative law.

Algorithmus 7.1.6. 1. Exponent k is transformed to its binary representation.

2. Replace each 0 with Q and each 1 with QM .

3. Q means “sqare”, and M means “multiply with x”.

4. Apply the resulting string from left to right on 1.

For k > 0, the binary representation always begins with 1. Hence, the first command is
QM , i.e. 12 · x = x. That is why the first step can QM can be replaced with x.

Example 7.1.7. Let k = 23. Its binary representation is k = 10111. This yields QM QQM QM QM .
By the simplification rule, we obtain: QQM QM QM applied to x. I.e.

x23 =

(((
x2
)2 · x)2 · x)2

· x

Remark 7.1.8. When calculating modulo N , reduce modulo N after each step Q or M .
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7.1.4 Padding

In practice, the RSA method described above is not used, because it has several weaknesses.

First of all, the method is deterministic. Hence, an attacker can guess some plain text and
encrypt it with the public key, and then compare with the code. If the attacker sets up a large
table of plaintext-code pairs, then he has a “dictionary” which helps him in the analysis of
encrypted messages.

If c = me < N , then an attacker can compute the integer e-th root of c and obtains the
plaintext m.

As the product of two encrypted messages is itself an encrypted message:

me
1 ·me

2 ≡ (m1 ·m2)
e mod N

an attacker can modify an encrypted message c ≡ me mod N to c′ ≡ c ·re mod N and ask the
receiver to decrypt the innocuous text c′, which yields m′ ≡ m · r mod N . With the extended
Euclidean algorithm (Theorem 5.2.3), the attacker then has the plaintext m ≡ m′ ·r−1 mod N .

Suppose, the same message m is sent to e different receivers having the same public exponent
e, but pairwise distinct moduli Ni. Then the attacker has only to solve the congruences

x ≡ me mod Ni, i = 1, . . . , e

simultaneously, which can be done with the Chinese Remainder Theorem (Theorem 7.1.9) and
yields an x ≡ me mod

∏
Ni. As x <

∏
Ni, the integer e-th root can now be calculated in

order to compute the plaintext.

Theorem 7.1.9 (Chinese Remainder Theorem). Let m1, . . . ,me be pairwise coprime integers.
Then there exists for each tuple a1, . . . , ae of integers an integer x which solves the simultaneous
congruece

x ≡ ai mod mi, i = 1, . . . , e

All solutions of this congruence are congruent modulo M := m1 · · ·me.

Proof. For each i, the numbers mi and Mi := M/mi are coprime. Hence, according to Theorem
5.2.3, there exist two numbers ri and si with

1 = rimi + siMi

Set ei := siMi. Then

ei ≡ 1 mod mi

ei ≡ 0 mod mj , j 6= i

The number x :=
e∑
i=1

aiei is a solution of the simultaneous congruence.

In order to prevent such attacks, the plaintext is extended by a sequence of characters R with
some structure having a randomisation (Padding). Hence, not the message M is transmitted,
but the plaintext M extended by R is encrypted. This makes, for a suitable choice of padding
method, attacks more difficult. For computing R, often pseudo-random numbers are used.
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7.1.5 Security of RSA

The security of the RSA crypto system relies on two mathematical problems:

1. Factorisation of large numbers

2. RSA problem

The RSA problem says: For given me mod N and pair (e,N), determine m. Hence, calcu-
late the e-th root modulo composite N . The most promising approach seems to be to factorise
N : If an attacker has the factorisation N = p · q, then he computes φ(N) = (p − 1)(q − 1)
and can calculate e efficiently with the extended Euclidean algorithm from d. However, to date
there is no known algorithm on conventional computers which can factorise an integer number
in polynomial time. Momentarily, it is recommended to have N at least of length 2048 bits, in
order to keep the running time of a factorisation sufficiently long.

On a quantum computer, things look differently: in 1994, Peter Shor developped a quantum
algorithm which can factorise natural numbers in polynomial time. This method, if it can be
implemented some time in the future, makes RSA insecure.

For reasons of efficiency, RSA is often used as part of a hybrid crypto system. The actual
message is encrypted with a symmetric encryption method, in which the same key is used for
encryption and decryption. RSA is then used for exchanging the key. E.g. the TLS protocal in
the internet uses this method.

As key lengths need to become bigger and bigger for retaining the same security, RSA is
gradually being replaced with elliptic curve cryptography.

7.1.6 A One-Million-Dollar Problem

Another equation which appears to Homer Simpson in the third dimension in Homer3, is

P = NP

This is an answer to the P -versus-NP problem of computer science. P is the class of problems,
for which there exists an algorithm which can solve it in polynomial time. NP is the class
of all problems, for which an answer can be verified in polynomial time. NP stands for non-
deterministic polynomial time.

An algorithm is said to run in polynomial time, if its running time is bounded from above
by a polynomial in the size n of the input data. E.g.

T (n) = O(n2)

means that the running time is in the worst case quadratic in n.

An example for a problem in NP is the factorisation of natural numbers. It can be checked
in polynomial time if a given factorisation of a number is correct. However, there is no known
polynomial-time factorisation algorithm on a conventional computer. If P = NP holds true,
then every problem that can be verified in polynomial time, can also be solved in polynomial
time. Then there must also exist an algorithm for factorising natural numbers which runs in
polynomial time. If P 6= NP , then this is not necessarily the case.

The P -versus-NP problem is one of the seven Millenium Problems, announced by the Clay
Mathematics Institute in the year 2000. However solves one of these problems first, obtains
a prize of one million dollars. To date, one of the problems was solved, namely the Poincaré
conjecture was solved in the year 2002 by G.J. Perelman who declined the prize.
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7.2 Elliptic Curve Cryptography

RSA cryptography is at the moment gradually being replace with elliptic curve cryptography,
as these guarantee more security for equal key length. This kind of cryptography relies on the
Diffie-Hellman key exchange which will be introduced in the following subsection.

7.2.1 Diffie-Hellman Key Exchange

For the key exchange by Diffie and Hellman, an abelian group (G,+) is used, for which the
discrete logarithm problem (DLP) is difficult to solve. The meaning of these two terms is now
going to be explained:

The discrete logarithm problem (DLP). Let in some abelian group be given the elements
P and n · P , where n is a natural number. Determine n.

Definition 7.2.1. An abelian group is a pair (G,+), where G is a set and

+: G×G→ G

is a map (the group addition, which satisfy the following conditions:

1. (a+ b) + c = a+ (b+ c) (associativity)

2. There exists an element 0 ∈ G, such that always a+ 0 = 0 + a = a holds true. (zero or
neutral element)

3. For every a ∈ G there exists a −a ∈ G with a+ (−a) = (−a) + a = 0. (inverse)

4. a+ b = b+ a (commutativity)

Here, a, b, c are arbitrary elements of G.

Example 7.2.2. Examples for abelian groups are (Z,+) and (K,+), as well as (K \{0}, ·) with
K ∈ {Q,R,C,Fp}. The latter abelian groups are written multiplicatively: the neutral element
is 1, and the inverse of a is a−1.

On notation. The group addition is often denoted with the symbol +. Then one simply
writes:

nP := P + · · ·+ P︸ ︷︷ ︸
n mal

where n ∈ N.

The key exchange. There is a public element P ∈ G.

Alice chooses a secret number n ∈ N and publishes nP .

Bob chooses a secret number m ∈ N and publishes mP .

Alice computes n(mP ) = nmP = Q.

Bob computes m(nP ) = mnP = Q.

Q is the secret key.
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Security. The security of the Diffie-Hellman key exchange relies on the difficulty of the discrete
logarithm problem. Namely, if an attacker discovers the numbers n and m, then he also has the
key

Q = nmP

Example 7.2.3. The abelian group (F×p , ·) with

F×p := {1, . . . , p− 1}

for p prime has the special property that it is cyclic. This means that every a ∈ F×p is the power
of a fixed element t ∈ F×p :

a = tn

The element t is called a generator of the cyclic group. The discrete logarithm problem means
here: given a generator t and a = tn, determine n.

Finite fields. Other than the finite fields Fp there are more finite fields. These are constructed
in the following way: Let

Fp[t] := {Polynome in t mit Koeffizienten aus Fp}

A polynomial π ∈ Fp[t] is called irreducible, if deg(π) > 0 and π has only trivial factorisations:

π = f · g ⇒ f ∈ F×p oder g ∈ F×p

Let an irreducible polynomial π ∈ Fp[t] be given, and let n := deg(π). Then

Fpn := Fp[t]/πFp[t] := {Reste von f ∈ Fp[t] modulo π}

with addition and multiplication of polynomials modulo π, is a field.

The first observation is that every element a ∈ Fpn is a linear combination of the elements
1, t, . . . , tn−1. This means that Fpn is a vector space over Fp of dimension n. It follows that the
field Fpn has precisely pn elements.

The construction also yields all possible finite fields. Namely:

Theorem 7.2.4. Every finite field is isomorphic to a field Fpn.

Example 7.2.5. The polynomial π = t2 + t+ 1 ∈ F2[t] is irreducible, as it has no zeros in F2

(having a zero is equivalent to having a linear factor). Hence,

F22 = F2 · 1 + F2t = {0, 1, t, t+ 1}

The multiplication table is
· 1 t t+ 1

1 1 t t+ 1
t t t+ 1 1

t+ 1 t+ 1 1 t

100



Charakteristic of a field. The charakteristic of a field K is the smallest positive integer n,
for which

n · 1K = 0K

where 1K and 0K are the unity element, respectively the zero element of K. If no such number
exists, then we define the characteristic of K to be zero. The characteristic of K is denoted as
char(K).

Satz. The characteristic of a field is either zero or a prime number.

Proof. Let n = charK > 0, and let n = a · b be a factorisztion. Observe that a 6= 0 and b 6= 0.
Then it holds true that

a · 1K · b · 1K = 0K

where a · 1K 6= 0K and b · 1K 6= 0K , which is impossible in a field, unless a = 1 or b = 1.
Otherwise, we would have in K:

b · 1K = baa−1 · 1K = b · 1K · a · 1K · a−1 · 1K = 0K · a−1 · 1K = 0K

a contradiction.

Example. It holds true that
char (Fpn) = p

Remark 7.2.6. The multiplicative group (F×pn , ·) is cyclic. This means that it is also interesting
for being used in the Diffie-Hellman key exchange.

7.2.2 Elliptic Curves

Historically, elliptic curves arose from the attempt to calculate the arc length of an ellipse. We
will follow this path in the following.

Elliptic Integrals. The arc length L of an ellips can be represented as the following integral:

L = 4a

π
2∫

0

√
1− k2 sin2 t dt

with k =
√
a2−b2
a and the semi-axes a and b. This integral is an example of an elliptic integral

of the first kind :

E(φ) =

∫ φ

0

√
1− k2 sin2 t dt

Such an integral also appears in the courses Kartenprojektionslehre (Master) and Grundlagen
kinematischer und dynamischer Modelle der Geodäsie (Bachelor). With the substitution x =
sin t, this becomes

E(u) =

u∫
0

1− k2x2√
(1− x2)(1− k2x2)

dx

A general elliptic integral is given as

f(x) =

∫
A(x) +B(x)

C(x) +D(x)
√
S(x)

dx

where A,B,C,D are polynomials, and S is a polynomial of degree 3 or 4.
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Example.

u = f(x) =

x∫
0

dt√
1− t2

= arcsin(x)

is an elliptic integral. Abel saw that it is better to consider the inverse function. In this example,
it is sin(x), a periodic function.

Elliptic function. An elliptic function p is the inverse function of an elliptic integrals of the
second kind. For k 6= 0, elliptic functions are doubly periodic:

p(u+mα) = p(u+ nβ) = p(u)

for certain α, β ∈ C with α
β /∈ R. Eisenstein, on the other hand, noticed that doubly periodic

functions are elliptic.

The general form of an elliptic function is

f(z) =
∑

m,n∈Z
(z +mω1 + nω2)

−2

with the periods ω1, ω2 ∈ C, ω1
ω2

/∈ R. The function

y(z) =
∑

m,n∈Z
(z +mω1 + nω2)

−2 −
∑

m,n∈Z\{0}

(mω1 + nω2)
−2

satisfies a differential equation of the form

y′(z)2 = p(y(z))

where p(X) is a polynomial of degree 3 with only simple zeros.

Weierstraß ℘-function. The Weierstraß ℘-function is

℘(z) = z−2 +
∑

m,n∈Z\{0}

(z +mω1 + nω2)
−2 − (mω1 + nω2)

−2

It satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

with coefficients g2, g3. By setting x := ℘(z) and y := ℘′(z), one obtains the equation

E : y2 = 4x3 − g2x− g3

This is the equation of an elliptisc curve. Due to the construction, one can see that the elliptic
curve E is isomorphic to C/Λ with the lattice

Λ = {mω1 + nω2 | m,n ∈ Z}

Hence, E is an abelian group.
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Elliptic curves over a field K. Formally, an elliptic curve over the field K is a non-singular
projective algebraic curve of genus 1. The equation

E : y2 = x3 + ax+ b

with a, b ∈ K is the Weierstraß normal form and is valid in case char(K) 6= 2, 3. The polynomial
f(x) = x3 + ax + b has only simple zeros. On an elliptic curve, one can define geometrically
certain things. First the K-rational points are given as

E(K) =
{

(x, y) ∈ K2 | y2 = x3 + ax+ b
}
∪ {O}

with the point O “at infinity”. This point can be found in the projective plane P2 via ho-
mogenising the equation for E:

y2z = x3 + axy2 + bz3

and for z = 0 it follows that x = 0 and y = 1 (projective coordinates!). Hence, O = (0 : 1 : 0).

The next step is to observe that E is symmetric with respect to the x-axis:

P = (x, y) ∈ E(K)⇒ −P := (x,−y) ∈ E(K)

Define −O := O. Further, let P,Q ∈ E(K). Then the straight line L through P and Q intersects
the curve E in a third point R ∈ E(K). Hence, we can define:

P +Q := Q+ P := −R
P +O := O + P := P

P + (−P ) := O

If P = Q, then let L be the tangent in P . If L intersects E in a second point R ∈ E(K), then
let

2P := −R
otherwise, let

2P = −P
We have

Satz. (E(K),+) is an abelian group with zero element O.

Elliptic curves over Fpn. Now, let K = Fpn . With q = pn, we have:

Satz (Hasse-bound). For the number |E(K)| of K-rational points on an elliptic curve E, it
holds true that:

||E(K)| − (q + 1)| ≤ 2
√
q

It follows that for large n, there are about q = pn K-rational points on the elliptic curve
E. This is interesting for generating keys. Further: E(K) is cyclic or a product of two cyclic
groups. This is important for the key exchange, as the public point P should be an element of
high order:

nP = O with minimal n > 0 as large as possible

ECDLP.

• There are numerous suitable elliptic curves over finite fields.

• The elliptic curve discrete logarithm problem (ECDLP) is more difficult than the factori-
sation of natural numbers or the DLP in F×q with q = pn.

• Best possible fields are K = Fp (p prime) or K = F2n .
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7.3 Quantum Cryptography

As in the near future, there will be powerful quantum computers, RSA and elliptic curve
cryptography will become insecure. A way out is quantum cryptography. There, polarised
photons are used, and the laws of quantum mechanics guarantee that a secure key exchange
can be managed.

In the BB84 protocol, two pairs of orthogonal polarisation states are used:

• die rectilinear basis: 0◦ and 90◦

• die diagonal basis: 45◦ and 135◦

From the laws of quantum mechanics, it follows that no measurement can distinguish all four
different states, as they are not all pairwise orthogonal. The reason is that a measurement
chooses an orthonormal basis, and the measurement result is one of these orthogonal states. For
example, in the rectilinear basis, only the states “horizontal” and “vertical” can be measured.
After a measurement, the photon is in the measured state, i.e. a measurement changes the state
of a particle.

The BB84 protocol.

1. Alice sets up a coding table, e.g.
0 1

+ ↑ →
× ↗ ↘

2. Alice generates a random bit (0 or 1) and randomly chooses an onb (rectilinear or diag-
onal), and sends to Bob a photon in the corresponding state. She repeats this process
several times.

3. Bob randomly chooses a basis and measures the state of the photon.

4. Alice and Bob compare their sequences of bases. If the bases are equal, they retain the
corresponding bit, otherwise they discard it.

In about 50% of the cases, Alice and Bob have a common bit. The sequence of retained bits
is the common key. In order to check if there was an eavesdropper, Alice and Bob compare
a chosen subsequence of their versions of the key. If Eve has obtained information about the
polarisations, transmission errors must have occurred. If too many bits are different, they
discard their key and repeat the procedure on a different channel.

Example 7.3.1. Assume that Alice chooses the basis + and her photon has the polarisation
→. If Bob also chooses +, then he will measure →, and both agree on this bit. If, on the other
hand, Bob chooses ×, then he will measure either ↗ or ↘, each with probability 1

2 . So, there
is a 50% chance that their bits will disagree.

Remark 7.3.2. Assume that Eve is an eavesdropper who manages to catch a photon. She does
not know which onb was used for its polarisation. So, she chooses one at random and performs
a measurement. If the onb’s do not agree, then her measurement will alter the state of the
photon, and there is a chance that an error is introduced which will be observed by Alice and
Bob.
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Chapter 8

Approximation

The task of approximation is to approximate a function f (which may be unknown) with a
simpler function (e.g. a polynomial). We will consider linear approximation, in which f is to
be approximated with a linear combination of predetermined linearly independent functions
f1, . . . , fn:

f ≈
n∑
i=1

γifi

Here, the functions f1, . . . , fn span a linear subspace U of the space V = C[a, b] of continuous
functions on the interval [a, b]. The approximation task is to approximate f as well as possible
by an element of the given subspace U of V .

Example. Examples for given subspaces of V = C[a, b] are such that are spanned by polynomi-
als, trigonometric functions, exponential functions or rational functions. E.g.

1. f1 = 1, f2 = x, f3 = x2,. . . , fn = xn−1.

2. f1 = 1, f2 = cosx, f3 = sinx, f4 = cos 2x, f5 = sin 2x, . . .

3. f1 = 1, f2 = eα1x, f2 = eα2x,. . .

4. f1 = 1, f2 = 1
(x−a1)p1 , f3 = 1

(x−a2)p2 ,. . .

8.1 Best Approximation

In order to evaluate an approximation or to determine an approximation error, a norm on the
vector space V is used.

Let K = R or K = C, and let V be a K-vector space.

Definition 8.1.1. A Norm on V is a function ‖·‖ : V → R≥0 with the following properties:

1. ‖f‖ = 0, if and only if f = 0.

2. ‖αf‖ = |α|‖f‖ for α ∈ K

3. ‖f + g‖ ≤ ‖f‖+ ‖g‖

A norm always defines a metric on V by:

d(f, g) := ‖f − g‖

Let us check that d is indeed a metric:
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Proof. 1. d(f, g) = 0 holds true, if and only if ‖f − g‖ = 0. This holds true, if and only if
f − g = 0. This is the case, if and only if f = g. This shows positivity.

2. Symmetry follows from:

d(f, g) = ‖f − g‖ = ‖(−1)(g − f)‖ = |−1|‖g − f‖ = ‖g − f‖ = d(g, f)

3. The triangle inequality holds true because:

d(f, h) = ‖f − h‖ = ‖f − g + g − h‖ ≤ ‖f − g‖+ ‖g − h‖ = d(f, g) + d(g, h)

Example 8.1.2. Examples for norms on V = C[a, b] are:

1. L1-norm:

‖f‖1 :=

b∫
a

|f(t)| dt

2. L2-norm:

‖f‖2 :=

 b∫
a

|f(t)|2 dt


1
2

3. L∞-norm:
‖f‖∞ := max

t∈[a,b]
|f(t)|

Now, we can define a best approximation to f from the subspace U . This is a function φ̂ ∈ U
with

d(f, φ̂) = min
φ∈U

d(f, φ)

Theorem 8.1.3 (Existence Theorem). For every function f ∈ V = C[a, b] and every finite-
dimensional linear subspace U of V and every norm ‖·‖ on V , there exists at least one best
approximation φ̂ ∈ U to f .

8.2 Gauß approximation

We now endow V = C[a, b] with the L2-norm. A best approximation with respect to the
L2-norm is called best L2-approximation.

In the following, we exploit the fact that the L2-norm comes from an inner product on V .
Namel, we have

‖f‖2 =
√
〈f, f〉

where 〈·, ·〉 is the standard inner product on V :

〈f, g〉 =

b∫
a

f(t)g(t) dt

Let U be a finite-dimensional linear subspace of V , and φ̂ ∈ U . We now consider the
approximation error for approximating f ∈ V with φ̂. We have
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Lemma 8.2.1. φ̂ ∈ U is best L2-approximation to f , if and only if f − φ̂ is orthogonal to U .

Proof. ⇐. Let f − φ̂ be orthogonal to U . Then with φ ∈ U arbitrary:∥∥∥f − φ̂∥∥∥2 = 〈f − φ̂, f − φ̂〉 = 〈f − φ̂, f − φ+ φ− φ̂〉 = 〈f − φ̂, f − φ〉+ 〈f − φ̂, φ− φ̂〉︸ ︷︷ ︸
=0

= 〈f − φ̂, f − φ〉 ≤
∥∥∥f − φ̂∥∥∥‖f − φ‖

Here, we have 〈f − φ̂, φ − φ̂〉 = 0, as φ − φ̂ ∈ U . The last inequality is the Cauchy-Schwarz
inequality. It follows that ∥∥∥f − φ̂∥∥∥ ≤ min

φ∈U
‖f − φ‖

⇒. Let K = R. If φ̂ ∈ U is best L2-approximation, and φ ∈ U , then

Fφ(t) :=
∥∥∥f − φ̂− tφ∥∥∥2

has a minimum in t = 0. Then

0 =
d

dt
Fφ(t)

∣∣∣∣
t=0

=
d

dt

∥∥∥f − φ̂− tφ∥∥∥2∣∣∣∣
t=0

= 2 〈f − φ̂− tφ, φ〉
∣∣∣
t=0

as

d

dt
〈a+ bt, a+ bt〉 =

d

dt

(
〈a, a〉+ 2t〈a, b〉+ t2〈b, b〉

)
= 2〈a, b〉+ 2t〈b, b〉 = 2〈a+ bt, b〉

It follows that for every φ ∈ U we have:

〈f − φ̂, φ〉 = 0

i.e. f − φ̂ is orthogonal to U .
Let now K = C. If f − φ̂ is not orthogonal to U , then there exists some ψ ∈ U with

〈f − φ̂, ψ〉 6= 0

Without loss of generality let 〈f − φ̂, ψ〉 < 0. Otherwise, replace ψ with eiαψ for a suitable
argument α. For 0 < t << 1 we now have∥∥∥f − φ̂+ tψ

∥∥∥2 = 〈f − φ̂+ tψ, f − φ̂+ tψ〉

= 〈f − φ̂, f − φ̂〉+ t〈f − φ̂, ψ〉+ t〈ψ, f − φ̂〉+ t2〈ψ,ψ〉︸ ︷︷ ︸
<0

< 〈f − φ̂, f − φ̂〉 =
∥∥∥f − φ̂∥∥∥2

This means that φ̂ − tψ ∈ U is a better L2-approximation than φ̂. Hence, φ̂ is not best L2-
approximation.

From this, we obtain uniqueness:

Theorem 8.2.2 (Gauß approximation). For f ∈ V = C[a, b] and finite-dimensional linear
subspace U of V , there exis precisely one best L2-approximation φ̂ ∈ U .
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Proof. Let φ̂1, φ̂2 ∈ U be best L2-approximations to f . Then for all φ ∈ U :

〈f − φ̂1, φ〉 = 〈f − φ̂2, φ〉 = 0

Then also
0 = 〈f − φ̂2 − (f − φ̂1), φ〉 = 〈φ̂1 − φ̂2, φ〉

Hence, because φ̂1 − φ̂2 ∈ U :

0 = 〈φ̂1 − φ̂2, φ̂1 − φ̂2〉 =
∥∥∥φ̂1 − φ̂2∥∥∥2

Hence, φ1 = φ2. This proves uniqueness.
Existence already follows from Theorem 8.1.3.

What is still missing, is a method for calculating the best L2-approximation. For this, we
start with a basis f1, . . . , fn of U . The best L2-approximation φ̂ has the form

φ̂ =
n∑
k=1

γkfk

For the approximation error f − φ̂ it follows with φ ∈ U that

0 = 〈f − φ̂, φ〉 =

〈
f −

n∑
k=1

γkfk, φ

〉
= 〈f, φ〉 −

n∑
k=1

γk〈fk, φ〉

This means that the coefficients γ1, . . . , γn solve the system of linear equations

n∑
k=1

〈fk, f`〉γk = 〈f, f`〉, ` = 1, . . . , n(8.1)

Here, the coefficient matrix
A = (〈fk, f`〉)

is hermitean, respectively, symmetric. A is even positive definite. Namely, for g = (γk) we have

g∗Ag =
n∑

k,`=1

γ̄`γk〈fk, f`〉 = 〈φ̂, φ̂〉 = ‖φ‖2

The equations (8.1) are called normal equations. Their uniquely determined solution is the
best L2-approximation. Ideally, one takes an orthonormal basis f1, . . . , fn of U . Then from the
normal equations, it follows that

γk = 〈f, fk〉

i.e. the best L2-approximation is given in this case by

φ̂ =

n∑
k=1

〈f, fk〉fk

Example 8.2.3. We want to find the best L2-approximation to

f : [−1, 1]→ R, x 7→ 1

1 + x2
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Figure 8.1: A function and its best L2-approximation with quadratic polynomials.

with quadratic polynomials.

A basis for the linear subspace U of C[−1, 1] consisting of quadratic polynomials is given by

f1 = 1, f2 = x, f3 = x2

The normal equations are given by the following system of linear equations:

1∫
−1

dx
1∫
−1
x dx

1∫
−1
x2 dx

1∫
−1
x dx

1∫
−1
x2 dx

1∫
−1
x3 dx

1∫
−1
x2 dx

1∫
−1
x3 dx

1∫
−1
x4 dx


γ̂1γ̂2
γ̂3

 =



1∫
−1

dx
1+x2

1∫
−1

x dx
1+x2

1∫
−1

x2 dx
1+x2


o, equivalently:  2 0 2/3

0 2/3 0
2/3 0 2/5

γ̂1γ̂2
γ̂3

 =

 2 arctan 1
0

2− 2 arctan 1


Its solution is γ̂1γ̂2

γ̂3

 =

 0.9624
0

−0.5310


Hence, φ̂ = 0.9624−0.5310x2 is the best L2-approximation from U to f . Figure 8.1 shows f and
the best L2-approximating quadratic polynomial to f . More efficient is the use of orthogonal
polynome from the following section.
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Trigonometric functions

Let
fk = eikx, k = −n, . . . , n

These functions are an orthonormal system for the linear subspace of C[0, 2π], spanned by them.
If

f =
∞∑

ν=−∞
γνe

iνx

is a Fourier series, then

γk =
1

2π
〈f, fk〉 =

1

2π

2π∫
0

f(x)e−ikx dx

Hence,

φ̂ =
n∑

k=−n
γke

ikx ∈ U

is the best L2-approximation to f . Smoothing by filtering the high-frequent parts is nothing
other than using the best L2-approximation.

8.3 Orthogonal Polynomials

Here, we use a continuous weight function

w : [a, b]→ R>0

and define a weighted inner product

〈f, g〉w =

b∫
a

f(t)g(t)w(t) dt

on V = C[a, b]. This is indeed an inner product:

Proof. 1. If f 6= 0, then there exists an interval Iε with f(x) 6= 0 for all x ∈ Iε. Then

〈f, f〉w =

b∫
a

|f(t)|2w(t) dt ≥
∫
Iε

|f(t)|2w(t) dt > 0

I.e. 〈f, f〉w = 0 implies f = 0.

2. 〈f, g〉w = 〈g, f〉w follows from inserting into the integral.

3. It also holds true that

〈αf + g〉w = α〈f, g〉w
〈f + g, h〉w = 〈f, h〉w + 〈g, h〉w

110



The inner product 〈·, ·〉w induces a norm ‖·‖w on V via

‖f‖w :=
√
〈f, f〉w =

 b∫
a

|f(t)|2w(t) dt


1
2

Orthogonal polynomials arise by orthogonalisation of 1, X,X2, . . . :

p0 = 1

pn = Xn −
n−1∑
µ=0

〈Xn, pµ〉w
〈pµ, pµ〉w

pµ, n = 1, 2, 3, . . .

according to the method of Gram-Schmidt (cf. Section 5.11). It holds true that pn is a monic
polynomial and is orthogonal to K[X]n−1, the polynomials of degree ≤ n− 1.

Orthogonal polynomials satisfy a 3-term recursion:

Theorem 8.3.1 (3-term recursion). For orthogonal polynomials p0, p1, . . . it holds true that:

p0 = 1, p1 = X − β0, pn+1 = (X − βn)pn − γ2npn−1

with n = 1, 2, . . . . Here, we have

βn =
〈Xpn, pn〉
〈pn, pn〉

, γ2n =
〈pn, pn〉
〈pn−1, pn−1〉

Proof. p0 = 1 by construction (Gram-Schmidt). Also:

p1 = X − 〈X, p0〉
〈p0, p0〉

p0 = X − β0

Let n ≥ 1, and let
qn+1 := (X − βn)pn − γ2npn−1

We need to show that qn+1 = pn+1. First, qn+1 and pn+1 are monic polynomials of degree n+1.
Hence,

r := pn+1 − qn+1 ∈ K[X]n

Now, we show that qn+1 is orthogonal to K[X]n. Then also r = pn+1 − qn+1 is orthogonal zu
K[X]n, in particular,

〈r, r〉 = 0

Hence: qn+1 = pn+1. In order to prove our orthogonality claim, we show one after the other
that qn+1 is orthogonal to pn, to pn−1 and to K[X]n−2. We have

〈qn+1, pn〉 = 〈Xpn, pn〉 − βn〈pn, pn〉 − γ2n 〈pn−1, pn〉︸ ︷︷ ︸
=0

= 0

by definition of βn. Hence, qn+1 is orthogonal to pn. Further:

〈qn+1, pn−1〉 = 〈Xpn, pn−1〉 − βn 〈pn, pn−1〉︸ ︷︷ ︸
=0

− γ2n〈pn−1, pn−1〉︸ ︷︷ ︸
=〈pn,pn〉

= 〈Xpn, pn−1〉︸ ︷︷ ︸
(∗)
= 〈pn,Xpn−1〉

−〈pn, pn〉 = 〈pn, Xpn−1 − pn︸ ︷︷ ︸
∈K[X]n−1

〉 = 0
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interval w(x) orthogonal polynomials

[−1, 1] 1 Legendre polynomials
[−1, 1] 1√

1−x2 Chebyshev polynomials

[−1, 1] (1− x)α(1 + x)β, α, β > −1 Jacobi polynomials

(−∞,∞) e−x
2

Hermite polynomials
(0,∞) e−xxα, α > −1 Laguerre polynomials

Table 8.1: Some classes of orthogonal polynomials.

where (∗) holds true, as X takes only real values:

〈Xpn, pn−1〉 =

b∫
a

tpn(t)pn−1(t)w(t) dt =

b∫
a

pn(t)tpn−1(t)w(t) dt

Hence, qn+1 is orthogonal to pn−1. Now, let q ∈ K[X]n−2. Then

〈qn+1, q〉 = 〈Xpn, q〉︸ ︷︷ ︸
=〈pn,Xq〉=0

−βn 〈pn, q〉︸ ︷︷ ︸
=0

−γ2n 〈pn−1, q〉︸ ︷︷ ︸
=0

= 0

Hence, qn+1 is orthogonal to K[X]n−2. As pn, pn−1 and K[X]n−2 span the space K[X]n, the
claim follows.

Example 8.3.2. Special weight functions on special intervals yield orthogonal polynomials with
certain names. Some are listed in table 8.1.

Example 8.3.3. We want to find again the best L2-approximation to f = 1
1+x2

by quadratic
polynomials. This time, orthogonal polynomials are to be used.

First, we construct the orthogonal polynomials. The weight function is w = 1, the interval
is [−1, 1]. By table 8.1, these are the Legendre polynomials. In the 3-terme recursion (Theorem
8.3.1) the following parameters arise:

β0 = β1 = 0, γ21 =
1

3

This means that the firs three Legendre polynomials are

p0 = 1, p1 = X, , p2 = X2 − 1

3

In order to obtain an orthonormal basis of K[X]2, we find the normalising factors:

〈p0, p0〉 = 2

〈p1, p1〉 =

1∫
−1

t2 dt =
2

3

〈p2, p2〉 =

1∫
−1

(
t4 − 2

3
t2 +

1

9

)
dx =

8

45
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Thus, we obtain the polynomials:

P0 =
1√
2
, P1 =

√
3

2
X, P2 =

3

2

√
5

2

(
X2 − 1

3

)
The coefficients are:

γ0 = 〈f, P0〉 =
√

2 arctan 1 ≈ 1.111

γ1 = 〈f, P1〉 = 0

γ2 = 〈f, P2〉 =
2

3

√
5

2

(
2− 8

3
arctan 1

)
≈ −0.2239

Hence,
φ̂ = γ0P0 + γ1P1 + γ2P2 ≈ 0.9624− 0.5310x2

is the best L2-approximation to f with quadratic polynomials.

8.4 Chebyshev approximation

Here, let K = R, and
C[a, b] = {f : [a, b]→ R | f stetig}

this time endowed with the L∞-norm ‖·‖∞:

‖f‖∞ = max
t∈[a,b]

|f(t)|

Let U be a finite-dimensional linear subspace of V = C[a, b], and let f ∈ V . Here, the best
L∞-approximation φ̂ ∈ U with ∥∥∥f − φ̂∥∥∥

∞
= min

φ∈U
‖f − φ‖∞

is in general not unique.

Example 8.4.1. Let [a, b] = [0, 1], f = 1 and U = Rx. Now, for φ ∈ U :

‖f − φ‖∞ ≥ 1

and for all φ of the form φ = αx with 0 ≤ α ≤ 2:

‖f − φ‖∞ = 1

Here, there is a non-uniqueness of the best L∞-approximation.

Uniqueness is given by the

Haar condition. Let dimU = n and let the interpolation problem

φ(xi) = yi, i = 1, . . . , n

with arbitrary places a ≤ x1 < · · · < xn ≤ b and values y1, . . . , yn always have a solution φ ∈ U .
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Proof. Let f1, . . . , fn be a basis of U . An interpolating φ =
n∑
i=1

γifi exists, if and only if the

system of linear equations

n∑
i=1

γifi(xj) = yj , j = 1, . . . , n(8.2)

has a solution for g = (xi) ∈ Rn. The Haar condition says that the linear system of equations
has a unique solution. If one rewrites (8.2) as

Ag = y(8.3)

with A = (fi(xj)) ∈ Rn×n and y = (yj) ∈ Rn, then, by the Haar condition, (8.3) has a solution
for every right-hand side y. If we choose as right-hand side every column of the unity matrix I,
then it follows that the matrix equation

AX = I

has a solution. Hence, A is invertible, and thus (8.3) has a unique solution.

8.5 Chebyshev polynomials of the first kind

The Chebyshev polynomials of the first kind can be defined directly as

Tn(x) = cos(n arccos(x)), x ∈ [−1, 1], n = 0, 1, 2, . . .

We have for θ ∈ [0, π]
Tn(cos θ) = cos(nθ)

These polynomials satisfy the recursion:

T0(X) = 1

T1(X) = X

Tn+1(X) = 2XTn(X)− Tn−1(X), n = 1, 2, 3, . . .

Proof. From the addition thereom for the cosine:

cosx+ cos y = 2 cos

(
x+ y

2

)
cos

(
x− y

2

)
it follows that

2 cos θ cos(nθ) = cos((n+ 1)θ) + cos((n− 1)θ)

Hence, with t = cos θ:

2tTn(t)− Tn−1(t) = 2 cos θ cos(nθ)− cos((n− 1)θ) = cos((n+ 1)θ) = Tn+1(t)

It follows that Tn(X) ∈ Z[X]n is a polynomial with integer coefficients. The leading coeffi-
cient is 2n−1 and deg(Tn) = n.
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Properties of the Chebyshev polynomials of the first kind

1. We have
max
t∈[−1,1]

|Tn(t)| = 1

2. Tn has in [−1, 1] in total n+ 1 extrema:

s
(n)
k = cos

(
kπ

n

)
, Tn

(
s
(n)
k

)
= (−1)k, k = 0, 1, . . . , n

3. Tn has in [−1, 1] in total n simple zeros

t
(n)
k = cos

(
(2k − 1)π

2n

)
, Tn

(
t
(n)
k

)
= 0, k = 1, . . . , n

4. It holds true that

max
t∈[−1,1]

n+1∏
k=1

∣∣∣t− t(n+1)
k

∣∣∣ = 2−n

5. Orthogonality relations:

1∫
−1

Tn(t)Tm(t)
dt√

1− t2
=


0, n 6= m

π, n = m = 0
π
2 , n = m 6= 0

Hence, Chebyshev polynomials are orthogonal polynomials.

Proof of 4. This follows from:

1

2n
Tn+1(X) =

n+1∏
k=0

(
X − t(n+1)

k

)
and property 1.

Example 8.5.1. In Figure 8.2, the Chebyshev polynomials of the first kind T2 to T7 are depicted.

8.6 Optimal Lagrange interpolation

Let f ∈ C[a, b]n+1. We want to approximate f as well as possible by polynomial interpolation in
n+1 places. If Pn(X) ∈ R[X]n is the Lagrange interpolation polynomial, then the interpolation
error is given by:

f(t)− Pn(t) =
f (n+1)(ξ)

(n+ 1)!
Nn+1(t)

(4.1.8), where ξ ∈ It and

Nn+1(X) =

n∏
ν=0

(X − xν)

and It is the smallest interval containing the places x0 < · · · < xn (in the interval [a, b]) and t.

The task is now to choose the places x0, . . . , xn in such a way that ‖Nn+1‖∞ becomes
minimal.
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Figure 8.2: The Chebyshev polynomials of the first kind T2 to T7.

The monic polynomial Nn+1(X) has the form

Nn+1 = Xn+1 − φ

with φ ∈ R[X]n. Wanted is the best L∞-approximation φ̂ ∈ U = R[X]n to f = Xn+1. As U
satisfies the Haar condition (Section 8.4), the best L∞-approximation is unique. The following
holds true:

Theorem 8.6.1. On [a, b] = [−1, 1], the best L∞-approximation φ̂ ∈ R[X]n to f = Xn+1 is
given by

φ̂ = Xn+1 − 2−nTn+1(X)

where Tn+1 is the n + 1-th Chebyshev polynomial of the first kind. The zeros of Tn+1 are the
optimal places for Lagrange interpolation on [−1, 1].

116



Chapter 9

Numerical Integration

Numerical Integration deals with the approximation of definite integrals:

b∫
a

f(x) dx ≈
n∑
i=0

αif(xi)

with places a ≤ x0 < · · · < xn ≤ b and weights αi ∈ R.

Example. The left Riemann sum

b∫
a

f(x) dx ≈
n−1∑
i=0

(xi+1 − xi)f(xi)

is a form of numerical integration. This is depicted in Figure 9.1.

Figure 9.1: Left Riemann sum (source: Wikipedia, author: Mkwadee).
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9.1 Interpolatoric Quadrature

9.1.1 Trapezoidal rule

In the Trapezoidal rule, the area under y = f(x) from x = 0 to x = h is approximated by a
trapezium ABCD (cf. Figure 9.2). Then

b∫
a

f(x) dx ≈ hf(0) + f(h)

2

Figure 9.2: Trapezoidal rule (source: Wikipedia, author: Boris23).

The idea behind the trapezoidal rule is to interpolate f in 0 and h with a linear polynomial
`(x):

b∫
a

f(x) dx ≈
b∫
a

`(x) dx

Here, the interpolant is

`(x) = f(0) +
f(h)− f(0)

h
x

It follows that
b∫
a

`(x) dx = f(0)x+
1

2

f(h)− f(0)

h
x2
∣∣∣∣h
0

= h
f(0) + f(h)

2

i.e. the trapezoidal rule.

The quadrature error is derived from the interpolation error

f(x)− `(x) =
f ′′(ξx)

2
x(x− h), ξx ∈ [0, h]

(4.1.8). Hence,

h∫
0

f(x) dx−
h∫

0

`(x) dx =

h∫
0

(f(x)− `(x)) dx =
1

2

h∫
0

f ′′(ξx)x(x− h) dx

MVTDI
=

f ′′(η)

2

h∫
0

x(x− h) dx = −f
′′(η)

12
h3, η ∈ [0, h]

With MVTDI is meant the Mean value theorem for definite integrals gemeint:
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Theorem 9.1.1 (Mean value theorem for definite integrals). Let f : [a, b]→ R be a continuous
function, and g : [a, b]→ R integrable with either g ≥ 0 or g ≤ 0. Then there exists an η ∈ [a, b],
such that

b∫
a

f(x)g(x) dx = f(η)

b∫
a

g(x) dx

Notice that x(x− h) ≤ 0 for x ∈ [0, h].

9.1.2 Chained trapezoidal rule

If the interval is large, then the simple trapezoidal rule becomes imprecise by the quadrature
error consideration of the previous section. A way out can be found through an equidistant
subdivision of the interval [a, b]:

a = x0 < x1 < · · · < xn−1 < xn = b

xi = a+ ih, h =
b− a
n

, i = 0, . . . , n

Now, apply the trapezoidal rule to each subinterval [xi−1, xi]:

xi∫
xi−1

f(x) dx ≈ hf(xi−1) + f(xi)

2

This yields:

b∫
a

f(x) dx ≈
n∑
i=1

h
f(xi−1) + f(xi)

2

= h

(
f(x0)

2
+ f(x1) + · · ·+ f(xn−1) +

f(xn)

2

)
=: ZTh(f)

The quadrature error is now:

b∑
a

f(x) dx− ZTh(f) =

n∑
i=1

−h
3

12
f ′′(ηi) = −h

2

12

b− a
n

n∑
i=1

f ′′(ηi)

with ηi ∈ [xi−1, xi]. The quantity 1
n

n∑
i=1

f ′′(ηi) is the arithmetic mean of the values f ′′(ηi).

Hence, it lies between the largest and the smallest value. By the mean value theorem, it follows
that there exists η ∈ [a, b] with

f ′′(η) =

n∑
i=1

f ′′(ηi)

Hence,
b∫
a

f(x) dx− ZTh(f) = −(b− a)f ′′(η)

12
h2

Consequence. Approximation by the chained trapezoid rule becomes arbitrarily precise by
adding more places (i.e. by decreasing h). The quadrature error is quadratic in h.
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9.1.3 Newton-Cotes formulae

The trapezoidal rule interpolates with a linear polynomial. Now, we interpolate with a polyno-
mial of degree at most n at places x0, . . . , xn ∈ [a, b]. Now, find weights α0, . . . , αn ∈ R, such
that polynomials f ∈ R[X]n are integrated exactly, i.e.

b∫
a

f(x) dx =

n∑
i=0

f(xi)αi, falls f ∈ R[X]n

The solution is given by the Lagrange basis polynomials

`i(X) =

n∏
j=0
j 6=i

X − xj
xi − xj

Namely,

αi :=

b∫
a

`i(x) dx

solves this task.

Proof. The quadrature is exact for f ∈ R[X]n: Namely, we have

f(X) =
n∑
i=0

f(xi)`i(X)

Hence,

b∫
a

f(x) dx =

n∑
i=0

f(xi)

b∫
a

`i(x) dx =

n∑
i=0

f(xi)αi

Closed Newton-Cotes formulae

Here, the places are chosen to be equidistant:

xi = a+ ih, h =
b− a
n

, i = 0, . . . , n

It follows that every x ∈ [a, b] is of the form

x = a+ th, t ∈ [0, n]

The Lagrange basis polynomials `i can then be written as

`i(X) =

n∏
j=0
j 6=i

X − xj
xi − xj

=
n∏
j=0
j 6=i

a+ th− a− jh
a+ ih− a− jh

=
n∏
j=0
j 6=i

t− j
i− j

Hence, as dx = h dt:

αi = h

n∫
0

n∏
j=0
j 6=i

t− j
i− j

dt, i = 0, . . . , n
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Example 9.1.2. Let n = 2. Then h = b−a
2 . We have:

α0 = h

2∫
0

t− 1

0− 1

t− 2

0− 2
dt =

h

3

α1 = h

2∫
0

t− 0

1− 0

t− 2

1− 2
dt =

4

3
h

α2 = h

2∫
0

t− 0

2− 0

t− 1

2− 1
dt =

h

3

This yields the Simpson rule1

b∫
a

f(x) dx ≈ h

3

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)

Some explicit closed Newton-Cotes formulae

Let n = 1, 2, 3, 4 and h = b−a
n . Then with I =

b∫
a
f(x) dx:

n = 1 : I ≈ b− a
2

(f(a) + f(b)) Trapezoidal rule

n = 2 : I ≈ b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
Simpson rule

n = 3 : I ≈ b− a
8

(f(a) + 3f(a+ b) + 3f(b− h) + f(b)) 3/8-rule

n = 4 : I ≈ b− a
90

(
7f(a) + 32f(a+ h) + 12f

(
a+ b

2

)
+ 32f(b− h) + 7f(b)

)
Boole rule

Example 9.1.3. We approximate I =
1∫
0

dx
1+x2

with the first 4 closed Newton-Cotes formulae.

1. Trapezoidal rule: I ≈ 0.75000.

2. Simpson rule: I ≈ 0.78333.

3. 3/8-rule: I ≈ 0.78462.

4. Boole rule: I ≈ 0.78553.

Error of Simpson rule

The quadrature error of the Simpson rule is

b∫
a

f(x) dx− b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
=

(b− a)5

2880
f (4)(η), η ∈ [a, b]

1this time named after Thomas Simpson (1710–1761)
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9.2 Gauß Quadrature

First, we define ∫
f :=

b∫
a

f(x)w(x) dx

with fixed positive, continuous weight function w : [a, b]→ R, and observe that
∫

is linear:∫
αf = α

∫
f, α ∈ R∫

(f + g) =

∫
f +

∫
g, f, g ∈ C[a, b]

We remind that
∫
fg defines an inner product on C[a, b] (cf. Section 8.3).

Zeros of orthogonal polynomials

For the Gauß quadrature, we will use the zeros of orthogonal polynomials. We have:

Theorem 9.2.1. Let p0, p1, p2, . . . be a sequence of orthogonal polynomials in C[a, b] with
deg pi = i. Then their zeros are simple, real and lie in the interval [a, b].

Proof. Let x0, . . . , xk be the distinct zeros of pn+1 inside the interval [a, b]. If k = n, then the
assertion is proven. If, however, k < n, then let

q(X) := (X − x0) · (X − xk)

We have deg q = k + 1 < n+ 1. Hence, ∫
pn+1q = 0(9.1)

But pn+1q has no sign change in [a, b], as every zero appears with even multiplicity. Hence,∫
pn+1q 6= 0

in contradiction to (9.1).

Indeed, the zeros of orthogonal polynomials are well-suited as places for integration. Let
x0, . . . , xn ∈ [a, b] be the zeros of pn+1, where p0, p1, . . . is a sequence of orthogonal polynomials
in C[a, b] mit deg pi = i. We set

αi :=

∫
`i, i = 1, . . . , n

where

`i(X) :=
n∏
j=0
j 6=i

X − xj
xj − xj

is the i-th Lagrange basis polynomial. The Gauß quadrature formula is

Gnf =
n∑
i=0

αif(xi)

We have:
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Theorem 9.2.2. If f ∈ R[X]2n+1, then Gnf is exact:

Gnf =

∫
f

Proof. Gnf is exact for polynomials of degree ≤ n by Section 9.1.3. Let f be a polynomial with
deg f ≤ 2n+ 1. We have: deg pn+1 = n+ 1. Hene, by division with remainder:

f = pn+1q + r, deg q,deg r ≤ n

Hence,

Gnf =

n∑
i=1

αif(xi) =

n∑
i=1

αi(pn+1(xi)︸ ︷︷ ︸
=0

q(xi) + r(xi)) =

n∑
i=1

αir(xi) = Gnr

deg r≤n
=

∫
r

(∗)
=

∫
(pn+1q + r) =

∫
f

where (∗) holds true, as pn+1 is orthogonal to q, because deg q ≤ n.

Consequence. The weights αi are all positive and ≤
∫

1.

Proof. 1. We have:

0 <

∫
`2i

(∗)
= Gn`

2
i =

∑
j

αj `
2
i (xj)︸ ︷︷ ︸
=δij

= αi

where (∗) holds true because deg `2i ≤ 2n+ 1.

2. We have: ∑
αi1 = Gn1 =

∫
1

If a sum of positive real numbers is at most
∫

1, then all summands are at most
∫

1.

Gauß quadrature error

We have ∫
f −Gnf =

f (2n+2)(ξ)

(2n+ 2)!

∫
p2n+1, ξ ∈ [a, b]

Convergence

For f ∈ C[a, b] we have:

lim
n→∞

Gnf =

∫
f

Example 9.2.3. 1. For [a, b] = [−1, 1] and w = 1 one speaks of the Gauß-Legendre quadra-
ture.

2. For the interval [0,∞) and w(x) = e−x it is the Gauß-Laguerre quadrature.

3. For (−∞,∞) and w(x) = e−x
2

it is the Gauß-Hermite quadrature.
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Gauß-Legendre formulae

In the Gauß-Legendre quadrature, the zeros of the Legendre polynomials P0, P1, . . . are used.
They satisfy the orthogonality relations∫ 1

−1
Pn(x)Pm(x) dx =

2

2n+ 1
δm,n

and the recursion formula

(n+ 1)Pn+1(X) + nPn−1(X) = (2n+ 1)XPn(X)

The first three Legendre polynomials are

P0 = 1, P1 = X, P2 =
3

2
X2 − 1

2

Table 9.1 gives the nodes and weights of the Gauß-Legendre quadrature for n ≤ 5.

n node xi weight αi
1 0 2

2 ±1/
√

3 1

3
0

±
√

3/5

8/9

5/9

4

±
√

(3− 2
√

6/5)/7

±
√

(3 + 2
√

6/5)/7

18+
√
30

36

18−
√
30

36

5

0

±1
3

√
5− 2

√
10/7

±1
3

√
5 + 2

√
10/7

128/225
322+13

√
70

900

322−13
√
70

900

Table 9.1: Nodes and weights of the Gauß-Legendre quadrature.

9.3 Interval transformation

Let weights and nodes of a quadrature formula on the interval [−1, 1] be given:

1∫
−1

g(x) dx ≈
n∑
i=0

αig(xi)

Suppose that these should be used in order to approximate the integral

b∫
a

f(t) dt

The the following transformation can be used:

t : [−1, 1]→ [a, b], x 7→ b− a
2

(x+ 1) + a
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This is affine-linear and maps [−1, 1] bijectively to [a, b]. With this substitution, we obtain

b∫
a

f(t) dt =

1∫
−1

f(t(x))
b− a

2
dx︸ ︷︷ ︸

=dt

=
b− a

2

1∫
−1

g(x) dx

with g(x) = f(t(x)). This yields the following quadrature formula for f :

b∫
a

f(t) dt ≈ b− a
2

n∑
i=1

αif(ti), ti = t(xi)

The new nodes are t(xi), and the new weights are

b− a
2

αi

due to the transformation t : [−1, 1]→ [a, b].

Example 9.3.1. We approximate

I =

1∫
0

dx

1 + x2

by using the Gauss-Legendre quadrature formulae. We take the transformation

t : [−1, 1]→ [0, 1], x 7→ 1

2
(x+ 1)

We have b−a
2 = 1

2 . By using table 9.1 we obtain:

n = 1. t1 = t(0) = 1
2 , α1 = 1

2 · 2 = 1.

I ≈ f
(

1

2

)
= 0.8000

n = 2.

t1 = t
(

1/
√

3
)
≈ 0.7887, α1 =

1

2
· 1 =

1

2

t2 = t
(
−1/
√

3
)
≈ 0.2113, α2 =

1

2

I ≈ 1

2
f(0.7887) +

1

2
f(0.2113) ≈ 0.7869

n = 3.

t1 = t(0) =
1

2
, α1 =

1

2
· 8

9
=

4

9

t2 = t
(√

3/5
)
≈ 0.8873, α2 =

1

2
· 5

9
=

5

18

t3 = t
(
−
√

3/5
)
≈ 0.1127, α3 =

5

18

I ≈ 4

9
f

(
1

2

)
+

5

18
(f(0.8873) + f(0.1127)) ≈ 0.7853

125



9.4 Romberg Integration

Let T 0
k be the chained trapezoid rule for n = 2k equidistant subintervals of [a, b]:

T 0
k = ZT2k(f), k = 0, 1, 2, . . .

with ZTn as in Section 9.1.2. Then one constructs higher difference quotients:

T ik =
4iT i−1k − T i−1k−1

4i − 1
, i = 1, 2, . . . , k

In the tableau

T 0
0

��
T 0
1
//

��

T 1
1

��
T 0
2
//

��

T 1
2
//

��

T 2
2

��
T 0
3
// T 1

3
// T 2

3
// T 3

3

. . .

each element depends only of its left and upper left neighbours.

Remark 9.4.1. The error for Tnk is O(h2i+2
k ), where hk = b−a

2k
.

Example 9.4.2. We compute

ln 2 =

2∫
1

dx

x

with the Romberg method. First:

T 0
0 =

1

2

(
1 +

1

2

)
= 0.75

T 0
1 =

1

2

(
1 +

1

2
· 2

3
+

1

2

)
= 0.708333333

T 0
2 =

1

4

(
1 +

1

2
· 4

5
+

1

2
· 2

3
+

1

2
· 4

7
+

1

2

)
= 0.69702380952

Then:

T 1
1 =

4T 0
1 − T 0

0

3
= 0.694444

T 1
2 =

4T 0
3 − T 0

2

3
= 0.693253, T 2

2 =
16T 1

2 − T 1
1

15
= 0.69317460

Comparison with ln 2 ≈ 0.69214718 shows that T 2
2 already has 4 correct digits after the decimal

point.
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